Prediction of ingress through turbine rim seals:Part 2 combined ingress


Owen, J. M., Pountney, O. and Lock, G., 2010. Prediction of ingress through turbine rim seals:Part 2 combined ingress. In: ASME Turbo Expo 2010.Vol. 4. New York, U. S. A.: American Society of Mechanical Engineers, pp. 1235-1245. (Proceedings of the ASME Turbo Expo)

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.


In Part 1 of this two-part paper, the orifice equations were solved for the case of externally-induced ingress, where the effects of rotational speed are negligible. In Part 2, the equations are solved, analytically and numerically, for combined ingress (CI) where the effects of both rotational speed and external flow are significant. For the CI case, the orifice model requires the calculation of three empirical constants, including Cd,e,RI and Cd,e,EI, the discharge coefficients for rotationally-induced (RI) and externally-induced (EI) ingress. For the analytical solutions, the external distribution of pressure is approximated by a linear saw-tooth model; for the numerical solutions, a fit to the measured pressures is used. It is shown that, although the values of the empirical constants depend on the shape of the pressure distribution used in the model, the theoretical variation of C w,min (the minimum nondimensional sealing flow rate needed to prevent ingress) depends principally on the magnitude of the peak-to-trough pressure difference in the external annulus. The solutions of the orifice model for Cw,min are compared with published measurements, which were made over a wide range of rotational speeds and external flow rates. As predicted by the model, the experimental values of Cw,min could be collapsed onto a single curve, which connects the asymptotes for RI and EI ingress at the respective smaller and larger external flow rates. At the smaller flow rates, the experimental data exhibit a minimum value of Cw,min, which undershoots the RI asymptote. Using an empirical correlation for C d,e, the model is able to predict this undershoot, albeit smaller in magnitude than the one exhibited by the experimental data. The limit of the EI asymptote is quantified, and it is suggested how the orifice model could be used to extrapolate effectiveness data obtained from an experimental rig to engine-operating conditions.


Item Type Book Sections
CreatorsOwen, J. M., Pountney, O. and Lock, G.
DepartmentsFaculty of Engineering & Design > Mechanical Engineering
Research CentresAerospace Engineering Research Centre
ID Code27920
Additional InformationASME Turbo Expo 2010: Power for Land, Sea, and Air, GT 2010, 14-18 June 2010, Glasgow, United Kingdom


Actions (login required)

View Item