Research

Methicillin Resistance Reduces the Virulence of Healthcare-Associated Methicillin-Resistant Staphylococcus aureus by Interfering With the agr Quorum Sensing System


Reference:

Rudkin, J. K., Edwards, A. M., Bowden, M. G., Brown, E. L., Pozzi, C., Waters, E. M., Chan, W. C., Williams, P., O'Gara, J. P. and Massey, R. C., 2012. Methicillin Resistance Reduces the Virulence of Healthcare-Associated Methicillin-Resistant Staphylococcus aureus by Interfering With the agr Quorum Sensing System. Journal of Infectious Diseases, 205 (5), pp. 798-806.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1093/infdis/jir845

Related URLs:

Abstract

The difficulty in successfully treating infections caused by methicillin-resistant Staphylococcus aureus (MRSA) has led to them being referred to as highly virulent or pathogenic. In our study of one of the major healthcare-associated MRSA (HA-MRSA) clones, we show that expression of the gene responsible for conferring methicillin resistance (mecA) is also directly responsible for reducing the ability of HA-MRSA to secrete cytolytic toxins. We show that resistance to methicillin induces changes in the cell wall, which affects the bacteria's agr quorum sensing system. This leads to reduced toxin expression and, as a consequence, reduced virulence in a murine model of sepsis. This diminished capacity to cause infection may explain the inability of HA-MRSA to move into the community and help us understand the recent emergence of community-associated MRSA (CA-MRSA). CA-MRSA typically express less penicillin-binding protein 2a (encoded by mecA), allowing them to maintain full virulence and succeed in the community environment.

Details

Item Type Articles
CreatorsRudkin, J. K., Edwards, A. M., Bowden, M. G., Brown, E. L., Pozzi, C., Waters, E. M., Chan, W. C., Williams, P., O'Gara, J. P. and Massey, R. C.
DOI10.1093/infdis/jir845
Related URLs
URLURL Type
http://dx.doi.org/10.1093/infdis/jir845Free Full-text
DepartmentsFaculty of Science > Biology & Biochemistry
RefereedYes
StatusPublished
ID Code29158

Export

Actions (login required)

View Item