Building Abelian Functions with Generalised Baker-Hirota Operators


England, M. and Athorne, C., 2012. Building Abelian Functions with Generalised Baker-Hirota Operators. SIGMA: Symmetry, Integrability and Geometry: Methods and Applications, 8 (037).

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

Related URLs:


present a new systematic method to construct Abelian functions on Jacobian varieties of plane, algebraic curves. The main tool used is a symmetric generalisation of the bilinear operator defined in the work of Baker and Hirota. We give explicit formulae for the multiple applications of the operators, use them to define infinite sequences of Abelian functions of a prescribed pole structure and deduce the key properties of these functions. We apply the theory on the two canonical curves of genus three, presenting new explicit examples of vector space bases of Abelian functions. These reveal previously unseen similarities between the theories of functions associated to curves of the same genus.


Item Type Articles
CreatorsEngland, M.and Athorne, C.
Related URLs
URLURL Type Full-text
DepartmentsFaculty of Science > Computer Science
ID Code30461


Actions (login required)

View Item