Research

Thickness, stability and contact angle of liquid films on and inside nanofibres, nanotubes and nanochannels


Reference:

Mattia, D., Starov, V. and Semenov, S., 2012. Thickness, stability and contact angle of liquid films on and inside nanofibres, nanotubes and nanochannels. Journal of Colloid and Interface Science, 384 (1), pp. 149-156.

Related documents:

[img]
Preview
PDF (Author's accepted version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1293kB) | Preview

    Official URL:

    http://dx.doi.org/10.1016/j.jcis.2012.06.051

    Abstract

    While the stability of liquid films on substrates is a classical topic of colloidal science, the availability of nanostructured materials, such as nanotubes, nanofibres and nanochannels, has raised the question of how the stability of liquid films and their wetting behaviour is affected by nanoscale confinement. This paper will present the conditions for the stability of liquid films on and inside cylindrical solid substrates with nanometre scale characteristic dimensions. It is shown that the stability is determined by an effective disjoining/conjoining pressure isotherm which differs from the corresponding disjoining/conjoining pressure isotherm of flat liquid films on flat solid substrates. From the former, the equilibrium contact angles of drops on an outer or inner surface of a cylindrical capillary have been calculated as a function of surface curvature, showing that the expressions for equilibrium contact angles vary for different geometries, in view of the difference in thickness of the film of uniform thickness with which the bulk liquid (drops or menisci) is at equilibrium. These calculations have been extended to the case of glass nanocapillaries and carbon nanotubes, finding good agreement with experimental results in the literature.

    Details

    Item Type Articles
    CreatorsMattia, D., Starov, V. and Semenov, S.
    DOI10.1016/j.jcis.2012.06.051
    DepartmentsFaculty of Engineering & Design > Chemical Engineering
    Publisher StatementJVIS_2012.pdf: NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Colloid and Interface Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Colloid and Interface Science, vol 384, issue 1, 2012, DOI 10.1016/j.jcis.2012.06.051
    RefereedYes
    StatusPublished
    ID Code30895

    Export

    Actions (login required)

    View Item

    Document Downloads

    More statistics for this item...