Research

Femtosecond pulse compression in a hollow-core photonic bandgap fiber by tuning its cross section


Reference:

González-Baquedano, N., Arzate, N., Torres-Gómez, I., Ferrando, A., Ceballos-Herrera, D.e. and Milián, C., 2012. Femtosecond pulse compression in a hollow-core photonic bandgap fiber by tuning its cross section. Photonics and Nanostructures - Fundamentals and Applications, 10 (4), pp. 594-601.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1016/j.photonics.2012.05.007

Abstract

We present a numerical study of soliton pulse compression in a seven-cell hollow-core photonic bandgap fiber. We analyze the enhancement of both the compression factor and the pulse shape quality of 360 nJ femtosecond pulses at the wavelength of 800 nm by tuning the cross section size of the fiber. We use the generalized non-linear Schrödinger equation in order to modeled the propagation of light pulses along the fiber. Our numerical results show that output compressed pulses can be obtained, in a propagation length of 31 cm, with a compression factor of 5.7 and pulse shape quality of 77% for a reduction of 4.5% of the cross section size of the fiber. The predicted compression factor is 3 times larger than that experimentally obtained in such propagation length of the pulse in a hollow-core photonic bandgap fiber.

Details

Item Type Articles
CreatorsGonzález-Baquedano, N., Arzate, N., Torres-Gómez, I., Ferrando, A., Ceballos-Herrera, D.e. and Milián, C.
DOI10.1016/j.photonics.2012.05.007
DepartmentsFaculty of Science > Physics
RefereedYes
StatusPublished
ID Code31814

Export

Actions (login required)

View Item