Research

Porous silicon nanocrystals in a silica aerogel matrix


Reference:

Amonkosolpan, J., Wolverson, D., Goller, B., Polisski, S., Kovalev, D., Rollings, M., Grogan, M. D. W. and Birks, T. A., 2012. Porous silicon nanocrystals in a silica aerogel matrix. Nanoscale Research Letters, 7, 397.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1186/1556-276X-7-397

Related URLs:

Abstract

Silicon nanoparticles of three types (oxide-terminated silicon nanospheres, micron-sized hydrogen-terminated porous silicon grains and micron-size oxide-terminated porous silicon grains) were incorporated into silica aerogels at the gel preparation stage. Samples with a wide range of concentrations were prepared, resulting in aerogels that were translucent (but weakly coloured) through to completely opaque for visible light over sample thicknesses of several millimetres. The photoluminescence of these composite materials and of silica aerogel without silicon inclusions was studied in vacuum and in the presence of molecular oxygen in order to determine whether there is any evidence for non-radiative energy transfer from the silicon triplet exciton state to molecular oxygen adsorbed at the silicon surface. No sensitivity to oxygen was observed from the nanoparticles which had partially H-terminated surfaces before incorporation, and so we conclude that the silicon surface has become substantially oxidised. Finally, the FTIR and Raman scattering spectra of the composites were studied in order to establish the presence of crystalline silicon; by taking the ratio of intensities of the silicon and aerogel Raman bands, we were able to obtain a quantitative measure of the silicon nanoparticle concentration independent of the degree of optical attenuation.

Details

Item Type Articles
CreatorsAmonkosolpan, J., Wolverson, D., Goller, B., Polisski, S., Kovalev, D., Rollings, M., Grogan, M. D. W. and Birks, T. A.
DOI10.1186/1556-276X-7-397
Related URLs
URLURL Type
http://dx.doi.org/10.1186/1556-276X-7-397Free Full-text
DepartmentsFaculty of Science > Physics
RefereedYes
StatusPublished
ID Code31871

Export

Actions (login required)

View Item