Research

Experimental measurements of ingestion through turbine rim seals. Part 3: Single and double seals


Reference:

Sangan, C. M., Pountney, O. J., Scobie, J. A., Wilson, M., Owen, J. M. and Lock, G. D., 2013. Experimental measurements of ingestion through turbine rim seals. Part 3: Single and double seals. Journal of Turbomachinery: Transactions of the ASME, 135 (5), 051011.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1115/1.4007504

Abstract

This paper describes experimental results from a research facility, which experimentally models hot gas ingress into the wheel-space of an axial turbine stage. Measurements of CO2 gas concentration in the rim-seal region and inside the wheel-space are used to assess the performance of generic (though engine-representative) single and double seals in terms of the variation of concentration effectiveness with sealing flow rate. The variation of pressure in the turbine annulus, which governs externally induced ingress, was obtained from steady pressure measurements downstream of the vanes. The benefit of using double seals is demonstrated: the ingested gas is shown to be predominately confined to the outer wheel-space radially outward of the inner seal; and in the inner wheel-space, radially inward of the inner seal, the effectiveness is shown to be significantly higher. Criteria for ranking the performance of single and double seals are proposed, and the performance limit for any double seal is shown to be one in which the inner seal is exposed to rotationally induced ingress. Although the ingress is a consequence of an unsteady, three-dimensional flow field and the cause-effect relationship between pressure and the sealing effectiveness is complex, the experimental data is shown to be successfully calculated by simple effectiveness equations developed from a theoretical model. The data illustrate that, for similar turbine-stage velocity triangles, the effectiveness can be correlated using two empirical parameters. In principle, these correlations could be extrapolated to a geometrically similar turbine operating at engine-representative conditions.

Details

Item Type Articles
CreatorsSangan, C. M., Pountney, O. J., Scobie, J. A., Wilson, M., Owen, J. M. and Lock, G. D.
DOI10.1115/1.4007504
DepartmentsFaculty of Engineering & Design > Mechanical Engineering
Research CentresAerospace Engineering Research Centre
RefereedYes
StatusPublished
ID Code32121

Export

Actions (login required)

View Item