Research

Comparative and functional analysis of alternative splicing in eukaryotic genomes


Reference:

Chen, L., 2012. Comparative and functional analysis of alternative splicing in eukaryotic genomes. Thesis (Doctor of Philosophy (PhD)). University of Bath.

Related documents:

[img]
Preview
PDF (Thesis) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (13MB) | Preview

    Abstract

    Alternative splicing (AS) is a common post-transcriptional process in eukaryotic organisms, by which multiple distinct functional transcripts are produced from a single gene. Because of its potential role in expanding transcript diversity, interest in alternative splicing has been increasing over the last decade, ever since the release of the human genome draft showed it contained little more than the number of genes of a worm. Although recent studies have shown that 94% human multi-exon genes undergo AS while aberrant AS may cause disease or cancer, evolution of AS in eukaryotic genomes remains largely unexplored mainly due to the lack of comparable AS estimates. In this thesis I built a Eukaryote Comprehensive & Comparable Alternative Splicing Events Database (ECCASED) based on the analyses of over 30 million Expressed Sequence Tag (ESTs) for 114 eukaryotic genomes, including protists (22), plants (20), fungi (23), metazoan (non-vertebrates, 29) and vertebrates (20). Using this database, I addressed two main questions: 1) How does alternative splicing relate to gene duplication (GD) as an alternative mechanism to increase transcript diversity? and 2) What is the contribution of alternative splicing to eukaryote transcript diversity? I found that the previous “interchangeable model” of AS and gene duplication is a by-product of an existing relation between gene expression breadth, AS and gene family size. I also show that alternative splicing has played a key role in the expansion of transcript diversity and that this expansion is the best predictor reported to date of organisms complexity assayed as number of cell types. In addition, by comparing alternative splicing patterns in cancer and normal transcript libraries I found that cancer derived transcript libraries have increased levels of “noisy splicing”.

    Details

    Item Type Thesis (Doctor of Philosophy (PhD))
    CreatorsChen, L.
    Uncontrolled Keywordsalternative splicing, eukaryotes, function, comparative genomics
    DepartmentsFaculty of Science > Biology & Biochemistry
    Publisher StatementUnivBath_PhD_2012_L_Chen.pdf: © The Author
    StatusUnpublished
    ID Code32174

    Export

    Actions (login required)

    View Item

    Document Downloads

    More statistics for this item...