Research

Repair and stabilization in confined nanoscale systems: inorganic nanowires within single-walled carbon nanotubes


Reference:

Ilie, A., Crampin, S., Karlsson, L. and Wilson, M., 2012. Repair and stabilization in confined nanoscale systems: inorganic nanowires within single-walled carbon nanotubes. Nano Research, 5 (12), pp. 833-844.

Related documents:

[img]
Preview
PDF (Author's accepted version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1136kB) | Preview

    Official URL:

    http://dx.doi.org/10.1007/s12274-012-0267-5

    Abstract

    Repair is ubiquitous in biological systems, but rare in the inorganic world. We show that inorganic nanoscale systems can however possess remarkable repair and reconfiguring capabilities when subjected to extreme confinement. Confined crystallization inside single-walled carbon nanotube (SWCNT) templates is known to produce the narrowest inorganic nanowires, but little is known about the potential for repair of such nanowires once crystallized, and what can drive it. Here inorganic nanowires encapsulated within SWCNTs were seen by high-resolution transmission electron microscopy to adjust to changes in their nanotube template through atomic rearrangement at room temperature. These observations highlight nanowire repair processes, supported by theoretical modeling, that are consistent with atomic migration at fractured, ionic ends of the nanowires encouraged by long-range force fields, as well as release-blocking mechanisms where nanowire atoms bind to nanotube walls to stabilize the ruptured nanotube and allow the nanowire to reform. Such principles can inform the design of nanoscale systems with enhanced resilience.

    Details

    Item Type Articles
    CreatorsIlie, A., Crampin, S., Karlsson, L. and Wilson, M.
    DOI10.1007/s12274-012-0267-5
    Uncontrolled Keywordsfilled carbon nanotubes, nanowires, repair, high-resolution transmission electron microscopy, density functional theory, molecular dynamics
    DepartmentsFaculty of Science > Physics
    Publisher StatementA_ILIE_Nano_Research_2012_11_13.pdf: The original publication is available at www.springerlink.com
    RefereedYes
    StatusPublished
    ID Code32363

    Export

    Actions (login required)

    View Item

    Document Downloads

    More statistics for this item...