Abstract art by shape classification


Song, Y.-Z., Pickup, D., Li, C., Rosin, P. and Hall, P., 2013. Abstract art by shape classification. IEEE Transactions on Visualization and Computer Graphics, 19 (8), pp. 1252-1263.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

Related URLs:


This paper shows that classifying shapes is a tool useful in Non-Photorealistic rendering from photographs. Our classifier inputs regions from an image segmentation hierarchy and outputs the “best” fitting simple shape such as a circle, square or triangle. Other approaches to NPR have recognised the benefits of segmentation, but none have classified the shape of segments. By doing so, we can create artwork of a more abstract nature, emulating the style of modern artists such as Matisse and other artists who favoured shape simplification in their artwork. The classifier chooses the shape that “best” represents the region. Since the classifier is trained by a user, the ‘best shape’ has a subjective quality that can over-ride measurements such as minimum error and more importantly captures user preferences. Once trained, the system is fully automatic, although simple user interaction is also possible to allow for differences in individual tastes. A gallery of results shows how this classifier contributes to NPR from images by producing abstract artwork.


Item Type Articles
CreatorsSong, Y.-Z., Pickup, D., Li, C., Rosin, P. and Hall, P.
Related URLs
Uncontrolled Keywordscomputer graphics and computer-aided design
DepartmentsFaculty of Science > Computer Science
Research CentresMedia Technology Research Centre
ID Code34819


Actions (login required)

View Item