Ab initio thermodynamics for the design of energy materials

Adam J. Jackson, Aron Walsh

Centre for Sustainable Chemical Technologies & Department of Chemistry, University of Bath, BA2 7AY, UK.
Email: a.j.jackson@bath.ac.uk

Computational materials modelling allows researchers to examine novel, rare, dangerous or even impossible compounds to gain insight while avoiding traditional practical limits. Such methods are especially suitable for energy materials, which tend to be highly-pure semiconductors doped with rare elements. Increasing computational power and sophistication has driven a steady increase in scale and accuracy, and recently it has become feasible to study chemical reactions in more detail by linking *ab initio* methods to classical thermodynamics.

Chemical thermodynamics

Materials modelling typically focuses on enthalpy, H, a measure of the heat associated with a reaction. The vast majority of this energy is due to electronic structure; temperature and pressure play a role but these are often neglected in the solid state.

\[
R = E_{\text{AB}} + E_{\text{C}} + E_{\text{D}} + PV
\]

\[
R = E_{\text{AB}} + E_{\text{C}} + E_{\text{D}} + \int C_{\text{GB}}T + PV
\]

where E_{DFT} is the ground-state energy of the electronic structure, calculated with density functional theory (DFT). Enthalpy changes are easy to relate to experimental results, even when the temperature, pressure and zero-point energy terms are neglected. However, for the study of chemical reactions it is more important to consider the Gibbs free energy, which incorporates entropy. A negative change in Gibbs free energy is associated with a spontaneous reaction.

\[
G = H - TS
\]

\[
G = E_{\text{DFT}} + E_{\text{comp}} + \int C_{\text{GB}}T + PV - TS
\]

Case study: Oxidation of GaN

GaN is a key material in high-efficiency LED lighting, with potential applications in photovoltaics and high-power switching. In an *ab initio* study, the equilibrium formation of oxygen defects was examined. These defects have a significant effect on the electronic structure of the material. It was confirmed that the solid-gas equilibrium is sensitive to temperature and pressure, but favours oxidation in practical conditions.

Phonon calculations

Entropy and heat capacity are largely derived from lattice vibrations. In order to obtain vibrational energies from first principles, a set of independent vibrational "modes" is found. In the "direct method", energy changes are calculated for a series of small displacements of individual atoms using DFT (or other theoretical methods). The atoms are assumed to be small harmonic oscillators, yielding a set of energies which are filled according to classical thermodynamics.

The general goal in materials modelling is to improve methods to the point that they readily achieve "chemical accuracy". As well as taking advantage of developments in quantum chemical methods, computer hardware and algorithms, a sound thermodynamic framework is needed to bring these models to real-world reaction conditions.

Case study: formation of CZTS

Cu$_2$ZnSnS$_4$ (CZTS) is a promising material for Terawatt-scale photovoltaics, being composed of abundant elements and an effective absorber in very thin films. An *ab initio* thermodynamics is being applied to compare the wide array of synthesis routes and phases involved in this complex system. The goal is an industrial process which is truly scalable, producing high-quality thin film solar cells.

Further reading:
Walsh, A. et al., Computational Approaches to Energy Materials 2013, Wiley

Lee, J.G., Computational Materials Science: An Introduction 2012, CRC press