
Link to official URL (if available):
http://dx.doi.org/10.1039/c3dt50284h

Opus: University of Bath Online Publication Store
http://opus.bath.ac.uk/

This version is made available in accordance with publisher policies. Please cite only the published version using the reference above.

See http://opus.bath.ac.uk/ for usage policies.

Please scroll down to view the document.
New cyclotetrasiloxanes bearing sila-alkyl substituted side chains and their applications as templates for gold nanowires

Ravi Shankar,*a Manchal Chaudhary,a Kieran C. Molloyb and Gabriele Kociok-Köhnb

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

New sila-alkyl substituted cyclotetrasiloxanes, [RMe2SiCH2CH(Me)SiO]n [R = Ph(1), 2-thienyl(2), 2-furyl(3)] have been synthesized by a hydrocyclosilylation reaction between 2,4,6,8-tetramethyl-2,4,6,8-tetraynylcyclotetrasiloxane, (D)4 and dimethylphenylsilane/dimethyl-2-thienylsilane/dimethyl-2-furylsilane in the presence of Karstedt’s catalyst. X-ray crystallographic studies of 1 and 2 reveal all-trans conformation of the methyl groups bonded to puckered siloxane core and formation of 3D supramolecular assemblies by virtue of intermolecular C—H−−−π interactions. These siloxanes act as potential templates for expeditious one pot synthesis of gold nanowires of varying aspect ratios which are obtained by reduction of HAgCl2,3H2O with triethylsilane (CHCl3, RT). On the other hand, the use of linear polysiloxane, [2-ThMe2SiCH2CH2(Me)SiO]2 (4) in lieu of the cyclotetrasiloxane 2 affords predominant formation of polydispersed AuNPs along with a few extended structures. These results suggest that conformational confinement of the appended groups on the cyclosiloxanes, 1-3 plays an important role to impart morphological control of the gold nanorod assemblies.

Introduction

Polysiloxanes with silicon-oxygen bonded skeletal frameworks constitute an important family of inorganic polymers with wide ranging applications.1,4 In recent years, a great deal of attention has been focused on the development of synthetic methods to incorporate appended functional substituents on these hydrophobic, flexible polymeric supports. A widely accepted approach to functionalize preformed polysiloxane frameworks involves chemical modification of Si-H/Si-Vinyl groups using a hydrocyclosilylation reaction,5,10 while thiol-ene click chemistry has been studied extensively to introduce appended thioether functionalities.11 Brook et al. have reported a systematic study on the B(C6F5)3 catalyzed synthesis of three-dimensional siloxane frameworks with precise control over molecular weight by appropriate choice of alkoxysilane and hydroisilane precursors.12 An important offshoot in this area relates to the chemical modification of molecular cyclosiloxanes, [RMeSiO]n (n = 3-5) bearing Si-H/Si-vinyl reactive groups.13-19 The incorporation of appended functionalities such as ferrocenyl, oligoethers and naphthalenediimide, etc. has been achieved by following the classical synthetic methods. Synthesis and structural aspects of a series of hydroxy substituted cyclosiloxanes, [R(OH)SiO]n (n = 3,4) have been reported by Umno et al.20 The studies have shown different conformational attributes of the appended Si-OH groups on the planar/puckered siloxane core and formation of supramolecular assemblies as a result of O-H−−−O type hydrogen bonding interactions.

Studies related to potential applications of functional cyclo/polysiloxanes as scaffolds to metal nanoparticles remain an active area of research. For example, stabilization of preformed Pd nanoparticles of 2-5 nm size domains has been achieved by a new family of polysiloxanes modified by fluorescent cinchonidine pendant groups.21 The catalytic activity of the thus formed polymer-palladium nanoassembly towards enantioselective hydrogenation reactions has been demonstrated. Brook et al.22 have utilized reducing and structure directing properties of water soluble, redox active polysiloxanes bearing citric acid groups as the pendant side chains to synthesize gold nanoplatelets and hyperbranched nanocrystals. Chauhan et al.23 have reported the synthesis of silver nanoparticles of necklace-like morphology by exploiting the reducing, as well as the stabilizing, properties of poly(methylhydrosiloxane), [Me(H)SiO]n in presence of triocytlyamine.

As part of our systematic study on functional silicon-based polymers,24 we have utilized the intrinsically variable reducing property of linear [R5Si]n branched [(R5Si)x(R'Si)i]n and network [RSi]n (R, R1 = Ph, Me or sila-alkyl) polysilanes to achieve synthesis of nearly spherical Ag and Pd nanoparticles with control over their size domains. The inclusion of appended thioether groups on linear polysilane support has paved the way to construct self-assemblies of spherical AuNPs. These results have prompted us to explore the synthetic utility of functional cyclo-/polysiloxanes in the synthetic domain of noble metal nanoparticle assemblies. Herein, we report the synthesis and structural characterization of sila-alkyl substituted cyclotetrasiloxanes, [RMe2SiCH2CH2(Me)SiO]n [R = Ph(1), 2-thienyl(2), 2-furyl(3)] as the first examples among the siloxane family with all-trans...
conformational attributes and their potential application as templates for the synthesis of gold nanowire assemblies.

Results and discussion

Synthesis and characterization of functional cyclotetrasiloxanes, 1-3

The synthesis of 1-3 (scheme 1) has been achieved by following a hydrosilylation reaction between 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane, (D₄)₂⁴ and dimethylphenylsilane/dimethyl-2-thienylsilane/ dimethyl-2-furylsilane in presence of Karstedt’s catalyst (90°C, 15-18h). After a brief induction period, the extent of each reaction was monitored at different time intervals by ¹H NMR spectroscopy. The complete disappearance of diagnostic signals at δ 5.5-6.5 due to Si-vinyl groups provides evidence for the completion of the reaction. The isolation of 1-3 as colorless, low melting solids is effected by repeated washing of the crude mixture with methanol and subsequent cooling at 5 °C for several days.

![Scheme 1 Synthesis of cyclotetrasiloxanes, 1-3.](image)

The identity of each compound has been established by IR, multinuclear NMR and ESI-MS spectral studies as well as X-ray crystal structure analysis of 1 and 2. The spectral data are summarized in the experimental section. In the ESI-MS spectra, the observed peaks associated with [M+Na]⁺ ions are identified and are in conformity with the suggested composition of each compound. The ¹H and ¹³C NMR spectral data are quite similar in the aliphatic region and reveals diagnostic signals due to peripheral methyl and sila-alkyl groups. The presence of a single ¹H NMR resonance due to Si-Me groups is suggestive of only one stereoisomer in solution. The results are further supported by ⁲⁹Si[¹H] NMR spectra which exhibit a distinct signal in the chemical shift region of δ -19.8 to -19.6 due to the silicon atoms associated with siloxane core. In addition, the resonance at -7.2 to -1.05 is assigned to the appended sila-alkyl groups. The formation of a single conformer in 1 and 2 from D₄⁴ as the starting precursor which exists as a mixture of geometrical isomers is quite noteworthy.

![Image 1 Molecular structure of 1. The inset shows puckered siloxane ring with all-trans methyl groups. Hydrogen atoms omitted for clarity.](image)

Single crystals suitable for X-ray crystal structure analysis for 1 and 2 are obtained by slow evaporation of the solution of each compound separately in chloroform-methanol mixture. The molecular structure of 1 along with atomic labels is shown in figure 1 while crystal data as well as selected bond lengths and angles are given in Tables 1 and 2 respectively. The structure reveals a puckered cyclosiloxane core (figure 1, inset) with dihedral angles of the four silicon atoms as 45.8(5) and 7.0(5)°. The Si1-O-Si1 and O-Si1-O angles are observed as 150.92(17)° and 110.12(13)° respectively. The metrical parameters are in conformity with those reported earlier for 1,3,5,7-tetrahydroxy-1,3,5,7-tetraorganocyclotetrasiloxanes. As evident from figure 1, each methyl group occupies a quasi-axial position with respect to the plane of the cyclic ring while the sila-alkyl chain exhibits a quasi-equatorial disposition. In this respect, the structure represents a unique example of all-trans conformation which is rarely observed in the family of heterosubstituted cyclosiloxanes. The molecular structure of 1 is extended to a novel three-dimensional motif by virtue of intermolecular C—H—····π interactions [H8—centroid = 3.628 Å, C8—centroid = 4.129 Å, C8—H8—centroid = 115.63°]. The perspective view along the crystallographic b-axis (Figure 2) reveals the formation of helical chain-like motif (Flack parameter = 0.5), while stacking of the cyclosiloxane core in the three-dimensional self-assembly is distinct along the c-axis. The crystal structure analysis of 2 reveals that the final R value is high (20%) and reflects poor sample quality (weak diffraction). Nevertheless, a chemically reasonable structure solution could be refined which unequivocally establishes the atom connectivity, and again reveals an all-trans conformation of the methyl groups with respect to the siloxane core (figure S1). The metrical parameters associated with the cyclic (Si-O₄)₂ structure resembles those described above for 1 but due to the low quality of the data will not be discussed further.

Synthesis and characterization of gold nanoparticles

As a case study, we have explored the reduction of HAuCl₄·3H₂O with triethylsilane as a mild reducing agent in presence of the cyclosiloxanes, 1-3. Thus, addition of triethylsilane into a sonicated solution containing the gold salt and the cyclosiloxane (1:2 molar ratio) in chloroform (HPLC, 25 mL) results in instant colour change of each solution from yellow to pink (for 1) and blue (for 2,3) suggesting the formation of AuNPs. The cyclosiloxane-gold assemblies thus formed are stable in solution.
Transmission electron microscopic (TEM) studies of gold nanoassemblies were performed by depositing one drop of the solution on a carbon-coated copper grid. The TEM images shown in figure 3 are typical of those found over the entire grid and reveal the formation of worm-like growth of Au nanoparticles in 1, the nanowires of varying chain lengths in 2, and a network of nanowire assemblies in 3. In the later case, the high resolution TEM (HRTEM) image (figure S2) shows that AuNWs have morphological features of polycrystalline structure and identifies the (111) plane with a 0.229 nm spacing between two adjacent lattice planes. In addition, the truncated branching sites are also evident along with the growing chains, in addition to individual nanoparticles at the terminal ends. The UV-Vis spectral profiles of the as-prepared solutions of the gold assemblies are shown in figure 4. A common feature of the spectra is a broad plasmonic resonance centered at 540-550 nm which tails in the near IR region. These results have been corroborated with a few earlier reports, which relate the plasmonic features with the shape/morphology of the gold nanoparticles/nanoassemblies. Accordingly, the former value is attributed to transverse surface plasmons, while the tailing in the longer wavelength region is believed to originate from superposition of the longitudinal surface plasmon resonance of the Au nanowires with various aspect ratios. A close similarity between the spectral profiles (figure 4a-c) of the extended gold nanostructures in the near IR region may in part be attributed to weak plasmonic couplings in the presence of siloxane scaffolds. To better understand the role of cyclosiloxanes as the scaffolds and structure-directing templates to attain gold nanowire morphology, we performed the synthesis of AuNPs using linear polysiloxane, [ThMe₅Si(CH₃)₂Si(Me)O]₉ (4) (M₉ = 6255/PDI = 1.15 with respect to polystyrene standards) which represents a linear analog of the cyclosiloxane 2. The synthesis of the polymer 4 is effected by hydrosilylation reaction between poly(methylvinylsiloxane) and ThMe₅SiH in presence of Karstedt’s catalyst and the details are described in the experimental section. The reduction of H₂AuCl₄·3H₂O with triethylsilane in presence of two equivalents of the polymer 4 in chloroform results in a blue colored solution similar to that observed in the gold nanoassemblies derived from 2. Interestingly, TEM study of thus-formed AuNPs reveals only a few regions of elongated structures with predominant formation of polydisperse AuNPs. Because of the structural inhomogeneity, a plausible analysis of the plasmonic properties showing a close resemblance (figure 4d) with those observed for gold nanowires is not warranted. These results provide a basis to put forth a plausible rationale for the formation of gold-nanowires in the cyclosiloxanes, 1-3. It is likely that complexation of Au(III) ions with phenyl, 2-thienyl or 2-furyl functionalities associated with spatially confined sila-alkyl side chains in 1-3 (figure 2) allows an orderly arrangement of Au ions prior to reduction by triethylsilane. This nucleation process results in initial formation of nearly spherical gold nanoparticles as evident from figure 3b (inset) thereby assisting extended one-dimensional growth. The driving force for 1D assembly formation of AuNPs is not yet clearly understood. We believe that the transverse confinement provided by the lattice framework of the siloxane may favour the

Fig. 2 3D structure of 1 (a) view along c axis (b) view along b axis. C·H···π interactions shown with green solid lines. Color codes: Si, blue; C, grey; H, cyan; O, Red; centroid, dark green.
growth of nanowires from the nanoparticles, presumably due to inherent anisotropy of NP-NP interactions. Such unconventional chain growth mode of colloidal AuNPs has been recently documented.38 In this context, the role of 1-3 to act as molecular templates is quite revealing in view of the well-documented literature which subscribe the use of already directional organic templates such as polyelectrolytes and biomolecules, among others to produce 1D nanoassemblies with diverse applications.

Fig. 4 UV-vis spectra (chloroform, RT) showing surface plasmon resonance of gold nanowires a-c in 1-3 respectively and that of nanoparticles d in 4. (The inset showing the color of the nanowires a-c in 1-3)

Table 1 Crystal data and structure refinement for 1

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C${44}$H${72}$O$_4$Si$_8$</td>
</tr>
<tr>
<td>Fw</td>
<td>889.74</td>
</tr>
<tr>
<td>T, K</td>
<td>150 (2)</td>
</tr>
<tr>
<td>λ (Å)</td>
<td>0.71073</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Tetragonal</td>
</tr>
<tr>
<td>Space group</td>
<td>I 4</td>
</tr>
<tr>
<td>a (Å)</td>
<td>19.8932(7)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>19.8932(7)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>6.6091(2)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>90</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
</tr>
<tr>
<td>V, (Å3)</td>
<td>2615.48(15)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>ρ_{calc} (Mg/m3)</td>
<td>1.130</td>
</tr>
<tr>
<td>μ (mm$^{-1}$)</td>
<td>0.242</td>
</tr>
<tr>
<td>F(000)</td>
<td>960</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.20 x 0.10 x 0.10 mm</td>
</tr>
<tr>
<td>ϑ range (deg)</td>
<td>4.10 - 25.01</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>27924</td>
</tr>
<tr>
<td>Unique data</td>
<td>2300</td>
</tr>
<tr>
<td>R_{int}</td>
<td>0.0633</td>
</tr>
<tr>
<td>Reflections observed (>2σ)</td>
<td>2052</td>
</tr>
<tr>
<td>Data completeness</td>
<td>0.993</td>
</tr>
<tr>
<td>Max. and min. Transmission</td>
<td>0.9762 and 0.9532</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>2300 / 0 / 130</td>
</tr>
<tr>
<td>GOF</td>
<td>1.065</td>
</tr>
<tr>
<td>Final R indices (I>2σI)</td>
<td>R~1 = 0.0575</td>
</tr>
<tr>
<td></td>
<td>wR~2 = 0.1435</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R~1 = 0.0657</td>
</tr>
<tr>
<td></td>
<td>wR~2 = 0.1505</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.800 and -0.253 e.Å3</td>
</tr>
<tr>
<td>Flack parameter</td>
<td>0.500</td>
</tr>
</tbody>
</table>

26 CCDC 921374 contain the crystallographic data in the CIF format for compound 1

Conclusions

In summary, the study describes synthesis and structural characterization of functional cyclosiloxanes 1-3 with an exclusive all-trans conformation of the appended groups. Potential applications of these molecular compounds in the construction of Au nanowires have opened up avenues for the development of new silicon-based templates that may prove to be useful in the construction of Au nanoassemblies with interesting morphological features.

Experimental

General comments

All operations were carried out using standard Schlenk line techniques under dry nitrogen atmosphere unless otherwise stated. Solvents were freshly distilled under inert atmosphere over phosphorus pentoxide (chloroform, dichloromethane) and magnesium (alcohols) before use. 2,4,6,8-Tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane, dimethylphenylsilane, hydrogen tetrachloroaurate(III) trihydrate and Karstedt’s catalyst (Aldrich) were used as received. The synthesis of hydrosilanes, RMe$_2$SiH
The intensity data of 1 were collected on a Nonius Kappa CCD diffractometer equipped with a molybdenum-sealed tube and a highly oriented graphite monochromator at 150(2) K. Cell parameters, data reduction, and absorption corrections were performed with Nonius software (DENZO and SCALEPACK). The structure was solved by direct methods using SIR-97 and refined by a full-matrix least-squares method on \(F^2 \) using SHELXL-97. All calculations and graphics were performed using WinGX. Partial atoms were refined isotropically. For 2, intensity data were collected on a BRUKER AXS SMARTAPEX diffractometer with a CCD area detector (KR) (0.71073 Å, monochromator: graphite). Frames were collected at \(T = 293(2) \) K by \(\omega, \varphi \), and \(2\theta \) – rotation at 10 s per frame with SAINT. The measured intensities were reduced to \(F^2 \) and corrected for absorption with SADABAS. Structure solution, refinement and data output were carried out with the SHELXTL program. Images were created with the Diamond program. All of the non-H atoms were refined anisotropically. H-atoms were placed in geometrically calculated positions by using a riding model unless stated otherwise.

Satisfactory data refinement for 2 was hampered by a weak data set (intensity of data decreased dramatically above 35 degrees in 2theta), the fact that the crystal was twinned and the presence of disorder in the thieryl group. This lead to high residual electron density with the largest difference peak at 3.65eÅ\(^3\). The atom connectivity was, however, established.
Synthetic Methods

Synthesis of functional cyclotetrasiloxanes, 1-3

In a typical procedure, the reactions between 2,4,6,8-Tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (2.0 g, 2.0 mL, 6.0 mmol) and dimethylphenylsilane/ dimethyl(2-thienyl) silane/ 2-furyldimethylsilane (25.0 mmol) were performed separately in the presence of Karstedt’s catalyst. An induction period was observed upon addition of a few mL of the silane into the reaction mixture. The contents of reaction were heated at 80-90°C for 15-18 h. The viscous liquid thus obtained was dissolved in dichloromethane and treated with activated charcoal to remove the catalyst. The clear colorless solution was filtered on Celite and the solvent was removed under vacuum. The viscous residue obtained in each case was washed with methanol and kept in the freezer to afford 1-3 as crystalline solids. (Yield: 75-80%) [PhMe2SiCH2CH2SiOMe2] (m.pt 34-36 °C), 1H NMR CDCl3: δ 7.10, 7.25 (br, Ph), 0.20 (s, 6H, PhMe2Si), 0.00 (s, Si-CH3), 0.40, 0.68 (m, CH2-CH2), 13C[1H] NMR: δ 140.8, 135.1, 130.2 129.2 (SiPh), 107.8, 8.4 (SiCH3CH2), 0.0 (SiCH3); -2.0 (SiMe2).
29Si[1H] NMR: δ -1.0 (s, SiMe2), -19.6 (s, Si-O). IR (KBr, cm⁻¹): 3064 (ν C-H, aromatic), 2957, 2908 (ν C-H, aliphatic), 1421 (δ C-H), 1076 (ν Si-O-Si), 1255 (ν Si-Me), 1138 (ν Si-Ph). ESI-MS (+ve mode, m/z): 911.3475 [M+Na]⁺. Anal. Calcd for C39H72O3Si14: C, 59.40; H, 8.16. Found: C, 58.8; H, 8.01.

[2-ThMe2SiCH2CH2SiOMe2] (m.pt 32-35°C), 1H NMR CDCl3: δ 7.14, 7.20, 7.54 (s, Th), 0.25 (s, 6H, ThMe2Si), 0.38 (s, Si-CH3), 0.47, 0.69 (m, CH2-CH2). 13C[1H] NMR: δ 144.2, 134.2, 77.2 (SiPh), 9.1, 7.5, 9.4 (SiCH3CH2), -1.5 (SiCH3). -2.3 (SiMe2). 29Si[1H] NMR: δ -3.5 (ThMe2Si), -19.8 (Si-O). IR (KBr, cm⁻¹): 3066 (ν C-H, aromatic), 2957, 2908 (ν C-H, aliphatic), 1407 (δ C-H), 1081 (ν Si-O-Si), 1255 (ν Si-Me), 1135 (ν Si-Th). ESI-MS (+ve mode, m/z): 935.1719 [M+Na]⁺. Anal. Calcd for C39H72O3Si14: C, 47.32; H, 7.06. Found: C, 46.76; H, 6.89.

[2-FuMe2SiCH2CH2SiOMe2] : 1H NMR CDCl3: 7.66, 6.68, 6.40 (br, Fu), 0.32 (s, 6H, FuMe2Si), 0.18 (s, Si-CH3), 0.58, 0.77 (m, CH2-CH2). 13C[1H] NMR: δ 158.9, 146.1, 119.5, 108.5 (SiFu), 8.6, 6.1 (SiCH3CH2), -1.9 (SiCH3), -4.3 (SiMe2). 29Si[1H] NMR: –7.6 (FuMe2Si), -19.8 (Si-O). IR (KBr, cm⁻¹): 3112 (ν C-H, aromatic), 2959, 2910 (ν C-H, aliphatic), 1408 (δ C-H), 1078 (ν Si-O-Si), 1255 (ν Si-Me), 1139 (ν Si-Fu). ESI-MS (+ve mode, m/z): 871.2645 [M+Na]⁺.

Synthesis of polysiloxane [ThMe2Si(CH2)3Si(Me)2O]4

(2-Thienyl)dimethylsilane (5.0 g, 5.0 mL, 36.0 mmol) was added dropwise at room temperature to a stirred solution of poly(methylvinylsiloxane) (3.1 g, 3.0 mL, 36.0 mmol) in toluene containing catalytic amount of Karstedt’s catalyst (10⁻⁵ Pt/mol of silane). After the complete addition of -2ThMe2SiH, the reaction mixture was heated at 90-93 °C for 15-18 h and the product obtained was centrifuged to separate the catalyst. Subsequent removal of the solvent under reduced pressure yields the crude polymer which was subjected to careful fractionation using a toluene/methanol mixture. The high molecular weight polymer fraction was obtained as light yellow colored viscous liquid. (yield = 60-70%) 1H NMR (CDCl3): δ 7.29, 7.60 (br, Th), 0.34 (s, 6H, ThMe2Si), 0.09 (br, CH3 of backbone), 0.51, 0.73 (br, CH2-CH2). 13C[1H] NMR: δ 141.1, 136.6, 132.8, 126.3 (SiTh), 11.5, 10.3 (SiCH3CH2), 0.88 (SiCH3), -0.35 (SiMe2). 29Si[1H] NMR: δ -3.58 (ThMe2Si), -23.21 (linear Si-O backbone). IR (KBr, cm⁻¹): 3066 (ν C-H, aromatic), 2957, 2907 (ν C-H, aliphatic), 1407 (δ C-H), 1079 (ν Si-O-Si), 1255 (ν Si-Me), 1135 (ν Si-Th).

Synthesis of gold nanoassemblies

To a sonicated suspension of hydrogen tetrachloroaurate(III) trihydrate (4 mg, 0.01 mmol) in 20 mL, HPLC (high performance liquid chromatography) grade, a solution of cyclotetrasiloxane, 1-3 (0.02 mmol) in the same solvent (10 mL, dry CHCl3) was added separately and then sonicated. Upon addition of triethylsilane, the solution in each case turned yellow to pink (for 1) and blue (for 2.3) within a few seconds. The resulting solutions containing Au nanoassemblies were kept overnight to attain equilibrium and used for TEM and UV-vis spectroscopic studies.

Acknowledgments

This research was supported by grant Project (No. 01(2561)/12/EMR-II) from CSIR (India). We thank CSIR (India) for a fellowship to Manchal and Department of Physics, IIT Delhi for TEM studies.

Notes

1 Department of Chemistry, Indian Institute of Technology, IIT-Delhi 110016, India. Tel: +91-11-26964544; E-mail: Shankar@chemistry.iitd.ac.in
2 Department of Chemistry, University of Bath, Bath BA2 7AY, U.K. E-mail: K.C.Molloy@bath.ac.uk

Electronic Supplementary Information (ESI) available: [Crystal data and structural view of 2. HRTEM image of gold nanowires.]. See DOI: 10.1039/6000000x

References

Klaus, B. DIAMOND, Version 1.2c; University of Bonn: Bonn, Germany, 1999.