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SUBSONIC PHASE TRANSITION WAVES IN BISTABLE LATTICE
MODELS WITH SMALL SPINODAL REGION*
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Abstract. Although phase transition waves in atomic chains with double-well potential play a
fundamental role in materials science, very little is known about their mathematical properties. In
particular, the only available results about waves with large amplitudes concern chains with piecewise-
quadratic pair potential. In this paper we consider perturbations of a bi-quadratic potential and prove
that the corresponding three-parameter family of waves persists as long as the perturbation is small
and localized with respect to the strain variable. As a standard Lyapunov—Schmidt reduction cannot
be used due to the presence of an essential spectrum, we characterize the perturbation of the wave
as a fixed point of a nonlinear and nonlocal operator and show that this operator is contractive on a
small ball in a suitable function space. Moreover, we derive a uniqueness result for phase transition
waves with certain properties and discuss the kinetic relations.
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1. Introduction. Many standard models in one-dimensional discrete elasticity
describe the motion in atomic chains with nearest neighbor interactions. The corre-
sponding equation of motion reads

(1) i () = @ (w1 () —u (1) — @' (us (t) —uj-1(t))

where @ is the interaction potential and u; denotes the displacement of particle j at
time ¢.

Of particular importance is the case of nonconvex ®, because then (1) provides
a simple dynamical model for martensitic phase transitions. In this context, a prop-
agating interface can be described by a phase transition wave, which is a traveling
wave that moves with subsonic speed and is heteroclinic as it connects periodic os-
cillations in different wells of ®. The interest in such waves is also motivated by
the quest to derive selection criteria for the naive continuum limit of (1), which is
the PDE Oyu = 9,9'(9,). For nonconvex ®, this equation is ill-posed due to its
elliptic-hyperbolic nature, and one proposal is to select solutions by so-called kinetic
relations [AK91, Tru87] derived from traveling waves in atomistic models.

Combining the traveling wave ansatz u;(t) = U(j — ct) with (1) yields the delay-
advance differential equation

(2) AR (z) = A9 (R(z)),
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where R(z) := U(x + 1/2) — U(x — 1/2) is the (symmetrized) discrete strain profile
and A1 F(z) := F(z+1) —2F(z) + F(x —1). Periodic and homoclinic traveling waves
have been studied intensively; see [FW94, SW97, FP99, Pan05, EP05, Herl0] and
the references therein, but very little is known about heteroclinic waves. The authors
are only aware of [HR10, Her11], which prove the existence of supersonic heteroclinic
waves, and the small amplitude results from [Ioo00]. In particular, there seems to
be no result that provides phase transitions waves with large amplitudes for generic
double-well potentials.

Phase transition waves with large amplitudes are only well understood for piece-
wise quadratic potentials, and there exists a rich body of literature on bi-quadratic
potentials, starting with [BCS01a, BCS01b, TV05]. For the special case

(3) ®(r)=1r* —|r|, ®'(r) =r —sgn(r),

the existence of phase transition waves has been established by two of the authors
using rigorous Fourier methods. In [SZ09] they consider subsonic speeds ¢ sufficiently
close to 1, which is the speed of sound, and show that (2) admits for each ¢ a two-
parameter family of phase transition waves. These waves have exactly one interface
and connect different periodic tail oscillations.

In this paper we allow for small perturbations of the potential (3) and show that
the three-parameter family of phase transition waves from [SZ12] persists provided
that the perturbation is sufficiently localized with respect to the strain variable r.

A related problem has been studied in [Vail0]. There, a piecewise quadratic family
of potentials is considered such that the stress-strain relationship is continuous and
trilinear, with a small spinodal region. Traveling wave solutions are shown to obey
a relation of residuals in the Fourier representation, which is then approximately
solved numerically. The regularity of the perturbed potential is lower than that of the
class of perturbations considered here, so strictly speaking the results do not overlap.
However, in spirit the settings are close and indeed the numerical evidence [VailO,
Figure 4, bottom right panel] is in good agreement with our findings: there is a one-
sided asymptotically constant solution, and the tail behind the interface oscillates
with slightly different amplitude than that related to (3). The range of velocities
considered in [VailQ] is larger than the one studied here.

Our approach is in essence perturbative and reformulates the traveling wave
equation with perturbed potential in terms of a corrector profile S, i.e., we write
R = Ry + S, where Ry is a given wave in the chain with unperturbed potential. The
resulting equation for the corrector S can be written as

(4) MS = A%G(S) + 1,

where n is a constant of integration and A, M, G are operators to be identified
below. More precisely, M is a linear integral operator which depends on ¢ and G a
nonlinear superposition operator involving Ry. The analysis of (4) is rather delicate
since the Fourier symbol of M has real roots, which implies that 0 is an inner point
of the continuous spectrum of M. In particular, M is not a Fredholm operator in the
function spaces considered here, so a standard bifurcation analysis from § = 0 via a
Lyapunov—-Schmidt reduction is not possible.

In our existence proof, we first eliminate the corresponding singularities and derive
an appropriate solution formula for the linear subproblem. Afterwards we introduce
a class of admissible functions S and show that A2G(S) is compactly supported and
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sufficiently small. These fine properties are illustrated in Figure 5 and allow us to
define a nonlocal and nonlinear operator 7 such that

MT(S) = A%G(S) + 1(S)

holds for all admissible S with some 7(S) € R. This operator 7 is contractive in some
ball of an appropriately defined function space, so the existence of phase transition
waves is granted by the contraction mapping principle; see Lemma 14. Moreover,
the properties of M and G imply that our fixed point method for S yields all phase
transition waves R that comply with certain requirements; see Proposition 17.

Our existence result yields—for each ¢ from an interval of subsonic velocities—a
genuine two-parameter family of solutions to (2) but it is not clear whether all these
phase transition waves are physically reasonable. In the literature, one often employs
selection criteria to single out a unique phase transition wave for each speed c. One
selection criterion is the causality principle, which in our case selects waves with
nonoscillatory tails in front of the interface; see [Sle01, Sle02, TV05] and Remark 5
following Theorem 3. These waves can also be observed in numerical simulations of
atomistic Riemann problems with nonoscillatory initial data [HSZ12].

Below we tailor our perturbation method carefully in order to show the persistence
of the amplitude of the tail oscillations in front of the interface. In particular, for
each small § and any given ¢ we obtain exactly one wave that complies with the
causality principle as it propagates towards an asymptotically constant state. The
other solutions are oscillatory for both + — —oco and * — 400, and satisfy the
entropy principle—which is less restrictive than the causality principle—as long as
the oscillations in front of the interface have smaller amplitude than those behind;
see [HSZ12] for more details and a discussion of the different versions of Sommerfeld’s
radiation condition. It is not known whether waves with tail oscillations on both sides
of the interface are dynamically stable or can be created by Riemann initial data. A
related open question is whether such noncausality waves can be regarded as local
building blocks for more complex solutions such as cascades of phase transition waves
in chains with triple-well potential (where, for instance, a causality wave connecting
two wells might be followed by a noncausality wave that connects to the third well).
For phase transition waves in chains with piecewise quadratic potential ¥y—which
are computed in [TVO05] by appropriately chosen contour integrals in the complex
plane—the causality principle can be linked to the vanishing viscosity limit for the
traveling wave equation as both favor the same indention of the integral contour;
see also [Sle01, Vail0]. We are, however, not aware of any mathematical result that
establishes the causality principle for the solutions of initial value problems. It remains
a challenging task to investigate the validity of selection criteria for phase transition
waves, especially in cases with nondegenerate nonlinearities.

We also emphasize that phase transition waves satisfy Rankine-Hugoniot condi-
tions for the macroscopic averages of mass, momentum, and total energy [HSZ12],
which encode nontrivial restrictions between the wave speed and the tail oscillations
on both sides of the interface. Although the jump conditions do not appear explicitly
in our existence proof, they can be computed because the tail oscillations are given
by harmonic waves; see Figure 2. For general double-well potentials, however, it is
much harder to evaluate the Rankine-Hugoniot conditions and thus it remains unclear
which tail oscillations can be connected by phase transition waves. Closely related
to the jump condition for the total energy is the kinetic relation, which specifies the
transfer between oscillatory and nonoscillatory energy at the interface and determines
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F1G. 1. Sketch of U5 and ®5 for 6 = 0 (grey) and § > 0 (black). Since ®q is symmetric, —Is
is just half the energy difference between the two wells of ®g.

the configurational force that drives the wave. In the final section we discuss how the
kinetic relation changes to leading order under small perturbations of the potential (3).
We now present our main result in greater detail.

1.1. Overview and main result. We study an atomic chain with interaction
potential

Dy(r) = 217 — Ws(r), Ps(0) =0,

where W% is a perturbation of ¥{, = sgn in a small neighborhood of 0. The traveling
wave equation therefore reads

(5) R = Ay(R - W5(R))

and depends on the parameters ¢ and . In order to show that (5) admits solutions for
small § we rely on the following assumptions on U%; see Figure 1 for an illustration.
Assumption 1. Let (¥s);., be a one-parameter family of C*-potentials such that
1. U coincides with U{ outside the interval (—d, 9),
2. there is a constant C'y independent of ¢ such that

Cy

W < Cos W) <

for all r € R.
The quantity

Is = %/R(\Ilg(r) — Uy (r)) dr

plays in important role in our perturbation result as it determines the leading order
correction. Notice that our assumptions imply

§

6) Is= %/ Us(r)dr = =3 (®s(+1) — Ps(—1)) and hence |Is| < Cyd.
-5

As already mentioned, the case § = 0 has been solved in [SZ09]. We also refer to

[TV05], which computes the causality wave Ry by means of contour integrals and the

residue method. In this paper we rely on the following characterization of the waves

in the unperturbed chain; see Figure 2 for an illustration.

PROPOSITION 2 ([SZ09], Proof of Theorem 3.11, and [SZ12, Theorem 1]). There
exists 0 < co < 1 such that for every c € [co, 1), there exists a two-parameter family
of solutions Ry € W*>(R) to the traveling wave equation (5) with § = 0. This family
is normalized by Ro(0) = 0 and can be described as follows.
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Fi1c. 2. Sketch of the waves for 6 =0 (grey) and § > 0 (black) as provided by our perturbation
result; the shaded region indicates the spinodal interval [—6, +5], where ‘Il:; differs from W(. Both

waves differ by the constant Is = O(8) and a small corrector S of order 0(52), which is oscillatory
for x < 0 but asymptotically constant as * — +oo. The tail oscillations of both waves do not
penetrate the spinodal region and are gemerated by harmonic waves with wave number k.. For
each admissible 6 and c there exists exactly one wave that satisfies the causality principle as it is
nonoscillatory for x — +oo.

(i) There exists a unique traveling wave Ry such that

Ro(z) 2=, 5f

Ro(x) — o (cos (kex) — 1) — B7 sin (kew) 5 7

for some constants r¥, k., o, and 35 depending on c.
(ii) There exists an open neighborhood U, of 0 in R? such that for any (o, B) € U,
the function Ry = Ro + a(cos (k.-) — 1) + Bsin (ke-) is a traveling wave with
(a) [ Rollow < Do(1-¢?) ",
(b) Ro(xz) > ro for x > x¢ and Ro(x) < —rg for x < —zo,
(¢) Ri(x) > do for |x| < xg
for some constants xq, o, do, and Dy depending on cq.
The main result of this article can be described as follows.
THEOREM 3. For all ¢; € (cg, 1) there exists 69 > 0 such that for any 0 < § < dg,

any speed cy < ¢ < c1, and any gien wave Ry as in Proposition 2 there exists a
solution R to (5) with

R=Ry—I;+ 5.

Here Is = O(8) is defined in (6) and the corrector S € W% (R)
(i) wvanishes at x =0,
) is nonoscillatory as x — +00, i.e., the limit lim,_, 4 S(x) is well defined,
(iii) admits harmonic tail oscillations for x — —oo, that means there exists con-

stants a— and d_ such that lim,_,_o S(z) —a_Ro(x + d_) is well defined,
(iv) is small in the sense of

I8l = 0(8%), IS0 = 0(),  [[18"[loc = O(1).

Moreover, the solution R with these properties is unique provided that 6 is sufficiently
small.

More detailed information about the existence and uniqueness part of our result
is given in Propositions 15 and 17, respectively. We further mention
1. since the traveling wave equation is invariant under

¢~ —c, R(zx) ~ R(—x),

there exists an analogous result for —1 < ¢ < 0;
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2. different choices of ¢ and Ry provide different waves R; see section 4;

3. the traveling wave equation (5) is, of course, invariant under shifts in  but
fixing Ry and S at 0 removes neutral directions in the contraction proof;

4. all constants derived below depend on ¢; and ¢y but for notational simplicity
we do not write this dependence explicitly. It remains open whether §y can
be chosen independently of ¢1;

5. the causality principle selects the solutions with ¢z < cpn and cgr > cpn for
all oscillatory harmonic modes ahead and behind the interface, respectively,
where, cg; and cpy, are the group and the phase velocity. For nearest neighbor
chains with interaction potential ®; and wave speed c sufficiently close to 1,
the tail oscillations involve only a single harmonic mode and Proposition 2
yields

cph = ¢ = alky) = k' Qk,) > cgr = ' (ke)

on both sides of the interface, where (k) = 2|sin (k/2)| is the dispersion
relation [SCC05, TV05, HSZ12]. The causality principle therefore selects the
solution Ry as it is the only wave having no tail oscillations ahead of the inter-
face. Since our perturbative approach changes neither the wave speed ¢ nor
the wave number k. in the oscillatory modes (but only the amplitude behind
the interface and, of course, the behavior near the interface), we conclude
that Theorem 3 provides for each § and ¢ exactly one wave that complies
with the causality principle;
6. the surprisingly simple leading order effect, that is the addition of —Is to
Ry, implies that the kinetic relation does not change to order O(d). Notice,
however, that the kinetic relation depends on the choice of Ry; cf. [SZ12].
This paper is organized as follows. In section 2 we reformulate (5) in terms of
integral operators A and M and show that it is sufficient to prove the existence of
waves for the special case Is = 0. Section 3 concerns the existence of correctors S.
We first establish an inversion formula for M which in turn enables us to define an
appropriate solution operator £ to the affine subproblem MS = A%G + n with given
G. Afterwards we investigate the properties of the nonlinear operator G and prove the
contractivity of the fixed point operator 7. In section 4 we establish our uniqueness
result and conclude with a discussion of the kinetic relation in section 5.

2. Preliminaries and reformulation of the problem. In this section we
reformulate the traveling wave equation (5) in terms of integral operators and show
that elementary transformations allow us to assume that Is = 0 holds for all § > 0.

2.1. Reformulation as integral equation. For our analysis it is convenient
to reformulate the problem in terms of the convolution operator A and the operator
M defined by

z+1/2
(AF)(x) := / F(s)ds,  MF:= A*F — ?F.
z—1/2
In terms of these integral operators, the traveling wave equation can be stated as

(7) MR = A*V5(R) + p,

where 1 is some constant of integration; see [FV99, SW97, TV06, HR10, Her10] for
similar reformulations of (5).
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F1G. 3. The real roots of the symbol function m are the solutions to |a(k)| = |c|.

LEMMA 4. A function R € W% (R) solves the traveling wave equation (5) if and
only if there exists a constant u € R such that (R, p) solves (7).
Proof. By the definition of A, we have 42 = A;. Equation (5) is therefore,

dx?2

and due to the definition of M, equivalent to

(8) (MR)"=P", P:=AU4R).

The implication (7) = (5) now follows immediately. Towards the reversed statement,
we integrate (8); twice with respect to x and obtain MR = P+ Az + p, where A and p
denote constants of integration. The condition R € L>(R) implies MR, ¥5(R), P €
L>°(R), and we conclude that A = 0. O

2.2. Properties of the operators A and M. Some of our arguments rely on
the Fourier transform, which we normalize as follows:

o —L eikw ) dx ) = i efikw/\
F(k)_m/R F(z)dz, F(z) \/%/R Fk)dk.

Using standard techniques for the Fourier transform in the space of tempered distri-
butions we readily verify the following assertions.
Remark 5. The operators A and M diagonalize in Fourier space and have symbols

_ sin(k/2)

a(k) = T and  m(k) = a(k)® — 2,

respectively. In particular, we have
Mcos (ke-) =0, Msin (ke-) =0, Ml=1-¢
for any real root k. of m, and
F € span { cos (kc), sin (ke) : m(ke) =0, ke>0}

for any tempered distribution F with MF = 0.

The set of real roots of m depends strongly on the value of ¢; see Figure 3. In
what follows we only deal with positive and near sonic speed ¢, that means ¢ g 1, for
which m has two simple real roots.

We next summarize further properties of the operator A and recall that the
Sobolev space W' P(R) is for any 1 < p < co continuously embedded into BC(R).

LEMMA 6. For any 1 < p < oo we have A: LP(R) — WLP(R) C BC(R) with

9) IAFlp < 1Flp,  IAF) [, <20Fllp, APl < I,
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for all F € L?(R), where (AF) = VF = F(- + 2) = F(-—1). Moreover, supp F C
[z1, x2] implies supp AF C [z1 — %, T9 + %]

Proof. Let 1 < p < co and F' € LP(R) be fixed. The definition of A ensures
that AF' has in fact the weak derivative VI, and this implies the estimate (9)2 via
IVE|, < 2||F||p. Using Holder’s inequality we find

z+1/2
|(AF) ()" g/ |F(s)[" ds
z—1/2
and integration with respect to  yields (9)1. We also infer that |(AF)(z)| < ||F||,
holds for all z € R, and this gives (9)s. Finally, the arguments for p = co are similar

and the claimed relation between supp F' and supp AF" is a direct consequence of the
definition of A. 0

2.3. Transformation to the special case Is = 0. The key observation that
traces the general case I5 # 0 back to the special case Is = 0 is that any shift in ¥}
can be compensated for by adding a constant to R.

LEMMA 7. The family (V5);5, defined by

0=06(1+Cy),  Wi(r)=Uj(r—1Iy)

satisfies Assumption 1 with constant Cy = Cy(14 Cy) as well as

I—1 /R BL(r) — Wh(r)dr =0 forall §>0.

[\

Moreover, each solution (R, i) to the modified traveling wave equation
(10) MR = AV4R) + fi
defines a solution (R, ) to (7) via R = R—1I5 and = ji— (¢ = 1)I5 and vice versa.

Proof. Due to |I5| < Cyd and our definitions we find \i/%(r) = Uy (r) at least for
all  with |r| > 4, as well as

= ~ ~ Cy Cy1+Cyg é@
U < < (M < —— = = —— .
‘ (T)‘ = C\IJ >~ C\I’ ) ‘ 5 (7‘)‘ < 5 5 1 C\I} 6 fOl“ all re R

S >

We also have

fi=4 [ (Wt 1) = W) ar = § [ (W) = wito -+ 1) ar

=%/R(@3(r>—@6(r))dr+%/R(%<r>—\Ifa(r+fa))dr=15—15=o.

Finally, the equivalence of (7) and (10) is obvious. O

3. Existence of phase transition waves. In this section, we show that each
phase transition wave for ¥y persists under the perturbation ¥y ~~ W4, provided that
¢ is sufficiently small. To this end we proceed as follows.

1. We fix ¢ € [cg, ¢1] with 0 < ¢p < ¢1 < 1 as in Proposition 2 and Theorem
3. Then there exists a unique solution k. > 0 to a(k.) = ¢, and this implies
m(xk.) =0, m'(+k.) # 0, and m(k) # 0 for k # +k.. All constants derived
below can be chosen independently of ¢ but are allowed to depend on ¢y and
C1.
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2. Thanks to Proposition 2 and Lemma 4, we fix (R, o) from the two-parameter
family of solutions to the integrated traveling wave equation (7) for 6 = 0 and
given c. Recall that Ry is normalized by Ry (0) = 0.

3. In view of Lemma 7, we assume that Is = 0 holds for all § > 0. To avoid
unnecessary technicalities we also assume from now on that ¢ is sufficiently
small.

In order to find a solution (R, p) to the integrated traveling wave equation (7) for
0 > 0, we further make the ansatz

R=Ro+S, p=po+n,
and seek correctors (S, ) such that
(11) MS = A*G +n, G=gG(s).
Here, the nonlinear operator G is defined by
(12) G(8)(x) = U5 (Ro(x) + S(x)) — T (Ro(w)) -

In order to identify a natural ansatz space X for S, we first remark that the smoothing
properties of A (see Lemma 6) imply S € W2°°(R). Notice, however, that R = Ry+ S
is in general more regular due to the smoothness of U5. More precisely, (7) combined
with U5 € C¥(R) yields R € C**1(R). We also impose the normalization condition
S(0) = 0 in order to eliminate the nonuniqueness that results from the shift invariance
of the traveling wave equation (7). In fact, without this constraint any corrector S
provides a whole family of other possible correctors via S = S(- + o)+ Ro (- 4+ z0)—Ro
with zo = O(6?).

A key property of our existence and uniqueness result is that the tail oscillations
of R are harmonic with wave number k. and that both R and Ry share the same
tail oscillations for z — 4o00. The corrector S is therefore nonoscillatory in the sense
that S(x) converges as © — +00 to some well-defined limit o. In summary, we seek
solutions (S, i) to (11) with S € X and n € R, where

X = {S€W27°°(R) : 5(0)=0, o= lim S(x) exists}

r——+0o0

is a closed subspace of W%>°(R) and hence a Banach space.

3.1. Inversion formula for M. Our first task is to construct for given G a
solution (S, 7) to the affine equation (11);. In a preparatory step, we therefore study
the solvability of the equation

(13) MF =Q

using the Fourier transform for tempered distributions, where @ € L*>°(R) is some
given function. This problem is not trivial because the symbol function m has two
simple roots at +k., or, equivalently, because 0 is an element of the continuous spec-
trum of M corresponding to a two-dimensional space of generalized eigenfunctions.
We are therefore confronted with the following two issues in Fourier space:

1. F is uniquely determined only up to elements from the space

span{ 6_k, (k) , 641 (k) },

which contains the Fourier transforms of all bounded kernel functions of M;
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F1G. 4. Properties of Y1 (grey) and Ya (black).

2. F exhibits—for generic @ with @(:I:kc) # 0—two poles at +k. and is hence
not Lebesgue integrable in the vicinity of +k.. In particular, the dual pairing
between F' and a Schwartz function is defined in the sense of Cauchy principal
values only.

The nonuniqueness is actually an advantage because it allows us to select solutions
with particular properties; see the proof of Lemma 10, where we add an appropriately
chosen kernel function to ensure nonoscillatory behavior for # — +o0. Concerning
the nonintegrable poles at +k., we split F' into a two-dimensional singular part and
a remaining regular part, and show that any solution F to (13) belongs to some
Lebesgue space provided that CA) is sufficiently regular.

As illustrated in Figure 4, we introduce two functions Y7, Y, € L°(R) with

V2 2
Yi(z) = W/:) cos (kew)sgn(a), Vale) = o ]: jsin (kea)sgn(z)
and verify by direct computations the following assertions.
Remark 8. We have
1. MY; € L*(R) with suppMY; C[-1, 1],
2. Yl(/ﬂ)z—l——li and Ya(k) = —

m! (ke) k2 — k2
3. mY; € L2(R) N BC'(R) with

m (ko) k2 — k2’

c

~

kgglkc m(k)Y1(k) = +i, kgrfkc m(k)Ya(k) = —1.
In particular, Y: and Y» have normalized poles at +k., and this allows us to derive
the following linear and continuous inversion formula for M.
LEMMA 9. Let Q be given with Q € L2(R) N BC(R). Then there exists a unique
Z € L%(R) such that

1y M (Z _ Q) Q) Q) + Q) ) o,

Moreover, Z depends linearly on Q and satisfies

12112 < (112 + 1@l )

for some constant C' independent of Q.
Proof. The function Z with

-~

R Q\(k) + 1Q(+kc) ; Q(_kc)
(15) Z(k) :=

m(k)¥ (k) + L) : Qlke) o

m(k)
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is well defined and continuously differentiable for k # +k.. Moreover, Remark 8 and
IHoépital’s rule ensure that the limits limg_, g, 7z (k) and hmk_>+k 7z (k) do exist, and
combining this with the integrability properties of m and Q we find Z € L2(R). The
inverse Fourier transform Z € L?(R) is therefore well defined by Parseval’s theorem,
depends linearly on @, and satisfies (14) by construction. With J := [—2k., +2k.| we
readily verify the estimates

H2HL2(R\J) < Hm_lHLOO(]R\J)H@”LQ(R\J)
+ (186+E) ] + Rk ) (1T les ey + Walliacenn)
< C(1Qleem + 11Qll=®)),

and Taylor expanding both the numerator and the denominator of the right-hand side
in (15) at k = k. we get

1ZllL2(sy) < CllZ]lcocry < ClQlcr

The desired estimate for ||Z||> now follows from [|Z]|2,) = ||Z||,_2 @ T HEHEz(J).
Finally, Z is the unique solution in L?(R) since any other solution to (14) differs from
Z by a linear combination of cos (k.-) and sin (k.-); see Remark 5. O

Lemma 9 implies that the linear operator M admits a linear and continuous
inverse

M~ FHL2(R) NBCH(R)) — L2(R) @ span { V7, Ya},

where F~! denotes the inverse Fourier transform. The proof of Lemma 9 also reveals
that M ™! can be extended to a larger space since one only needs that @ is continuously
differentiable in some neighborhood of +k.. For our purpose, however, it is sufficient
to assume that Q € BC'(R). We also mention that the constant C' in Lemma 9, which
is the Lipschitz constant of M ™1, is uniform in ¢y < ¢ < ¢; but will grow with ¢; — 1,
due to the definition of Y; and Y5 and the properties of m.

3.2. Solution operator to the affine subproblem. We are now able to prove
that the affine problem (11); admits a solution operator
L:GeYr— (S, n)eXxR,
where

:{Geﬁ%m;smmegpaﬂg.

The existence of L is a consequence of the following result.
LEMMA 10. For each G € Y there exists a unique (S, n) € X X R such that

(16) MS = A%G +1.

Moreover, S and n depend linearly on G and we have
L [n] < CmlA*G oo
2. [I8]loe < Cp| A*G| oo
3. 15 oe < CMm||AG] oo
415" loo < CmlIGlloo
for some constant Cpq > 0 independent of G.



2636 M. HERRMANN, K. MATTHIES, H. SCHWETLICK, AND J. ZIMMER

Proof. The function @ := A?G satisfies supp Q C [~2, 2], and using

d ~ 2
%Q(k)‘ < C/_2 (1+12])]|Q(2)] dz < C||Q|loc  forall keR

as well as ||Q||2 = ||Q||2, we easily verify that

Q12 + 1Rl 00 < CIQl oo -

By Lemma 9, the function S := M1 A2@ takes the form S = Z + fiYr + f2Ys, where
Z € L2(R) and fi, fo € R satisfy

(17) 1Z]l2 + 1] + [ f2] < CllQlco = C[|A*C|os -
In particular, we have MS = A2G and hence
PZ=AZ7 - AG+ M1+ frMY;.

The functions MY7, MY> are supported in [—1, +1] (see Remark 8) and G € Y
combined with Lemma 6 implies that A?G vanishes outside of [—2, +2]. For |z| > 2
we therefore find

z+1/2

—1/2

) 1/2
|2@)] = [(A2)(2)] < ( / ((42)(s)) ds> = g

thanks to Holder’s inequality and since Lemma 6 implies AZ € L*(R). By definition
of M, @, and S we also have
(18) A8 = —A2G + A2S = —A’G + A*(Z + iY1 + foYa),
and Lemma 6 ensures that
[A*Z]loe < [1Z]l2,  [A*Yilloo < [I¥illoo -
Combining these estimates with (17) and (18), we arrive at S € L(R) with
1S]l0e < CIA*Glloo -

Moreover, differentiating the first identity in (18) with respect to x, we get

A8 =V(-AG+AS), 28"=VV(-G+8S),

where the discrete differential operator V is defined as VU = U(- + 3) — U(- — 3), cf.
Lemma 6. This implies

IS0 < ClAG) e, 118" lloc < ClIG o0

thanks to [ 42G]|e < [AG|loe < [|Glloe and | AS|lec < ||S|ls- Since S does not
belong to X, we now define

V2r
m’(kc)

V2r
m’(kc)

3

(19) S(x) == S(z) — S(0) — f1 (cos (kex) — 1) — f2 sin (kex)



SUBSONIC PHASE TRANSITION WAVES 2637

as well as

(20) =01 )(flm,(kc) S<o>>,

and observe that S € X and (16) hold by construction and due to limg_,o, Z(x) = 0.
Moreover, S and n depend linearly on G and the above estimates for f; and fo and
S provide the desired estimates for both S and 7. Finally, the uniqueness of (S, n) is
a direct consequence of S € X and Lemma 5. d

Notice that the solution (S, n) to (11); is unique only in the space X x R and
that further solution branches exist due to the nontrivial kernel functions of M. For
instance, replacing (19) and (20) by

S(z):= S — 5(0), n:=—(1-¢*)S(0)
we can define an operator
(21) L:GeY—= (57 eXxR, X:={SeW>>®[R): 5(0)=0},

which provides another solution to the affine problem (11);. The corresponding cor-
rector S, however, does in general not belong to X as it is oscillatory for both x — —oo
and z — 4o0.

We emphasize that the three-parameter family of traveling waves R = Ry + S,
which we construct below by fixed points arguments involving L, is—at least for
sufficiently small 6—independent of the details in the definition of £. The reason is,
roughly speaking, that changing £ is equivalent to changing Ry; see the discussion at
the end of section 4. However, choosing X x R as the image space for £ provides more
information on the resulting family of traveling waves: The existence of lim,_, 4+ S(z)
reveals that for each c¢ there exists precisely one wave R = Ry + S that complies with
the causality principle as it is nonoscillatory for x — +oo.

3.3. Properties of the nonlinear operator G. In order to investigate the
properties of the nonlinear superposition operator G, we introduce a class of admissible
perturbations S. More precisely, we say that S € X is -admissible if there exist two
numbers x_ < 0 < x4, which both depend on S and §, such that

1. Ro(zy) + S(xy) = 16,

2. Ro(z)+ S(z) < =6 for xz<a_,

3. Ro(z) + S(z) >+6 for x>uaxy,

4. TRH(0) < Ry(z) + S'(z) < 2RH(0) for z_ <z <y,
where Ry is the chosen wave for § = 0. Below we show that each sufficiently small ball
in X consists entirely of d-admissible functions, and this enables us to find traveling
waves by the contraction mapping principle.

We are now able to derive the second key argument for our fixed point argument.

LEMMA 11. Let S € X be §-admissible and G = G(S) as in (12). Then we have

(22) |Gl =C,  suppG C [-C6, CF], /G(’I) da < C(1+5"]|00)8?
R
for some constant C independent of S and §, and hence G € Y for 0 < d < 1/C.
Proof. The estimate (22); is a consequence of ||G|loc < 1+ Cy. Since S is

d-admissible, we also have

supp G = [z_, z4], +6==+ /O‘Ti (Ry(z) + S'(2)) d
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with x4 as above, and this implies

2 2
d<|rg| < =0, supp G C

2 -9, 9] .
> 2F40) 0 70
Using the Taylor estimate

(24) |Ry(a) + S'(2) — Ry(0) = S"(0)| < (IIRglloo + 115" loc) I]

we also verify that

o2 * 1R lloo + 15" oo _ <2 1B 1o + 115" llso
(25)  |o=F ‘ < s40 -
Ry(0)+50)| = 2 Ry(0) + 5(0) Rj(0)*

A direct computation now yields

/RG(QJ) dz = /m U5 (Ro(z) + S(z)) do — /SD+ sgn(Ro(z)) dz

§
dr
— [ v L B
/—6 6(T)Z(T) |$++$ |7

due to sgn(Ro(z)) = sgn(z). Here, the function z with z(Ro(z) + S(z)) = Ry(z) +
S'(x) for all € [x_, x4] is well defined since R+ Sy is strictly increasing on [z_, x].
Thanks to (24), our assumption I5 = fj; U4 (r)dr = 0, and the estimate z(r), z(0) >
$R((0) we get

0 dr 0 1 1 ’ |2(r) — 2(0)]
\I//T—Z/\I//r<———>dr</ W (r dr
‘/5 o R = 2
< eyl o) (Rl +157))
R5(0)
and combining this with (23), (25), and (26) gives
R// oo S// o
/G(x)dx < |a:_+x+|+05(|a:_|+|x+|)” OHR’+O”2 H

@ LAY "

<o 0=

R(0)

By Proposition 2, item (ii)(c), the value R((0) is bounded from below. Moreover,
combining item (ii)(a) of Proposition 2 with the equation for Rf, that is,

CQRS = AlRO — Alsgn,

we find a constant C, which depends only on ¢y and ¢, such that |Rj|jc < C.
The claims (22)2 and (22)3 are now direct consequences of these observations and
the estimates (25) and (27). Moreover, G = G(S) € Y follows with § < 1/C from
(23),. O

COROLLARY 12. There exists a constant Cg, which is independent of 8, such that

(28) [AGll0 < Cgd,  [[A*Glloc < Cg(1+ [15"]|00)8?,
hold with G = G(S) for all §-admissible S.
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graph of G graph of AG graph of A2G
0(1) 0(9)

A 0(5%)
05 10 ) — 10

Fi1G. 5. Properties of G = G(S) for §-admissible S. The shaded regions indicate intervals with
length of order O(9).

Proof. Thanks to Lemma 11 and since A is the convolution with the characteristic
function of the interval [—%, +1], there exists a constant C' such that

|AG(z)| < C9o for |z+1]<09,
AG(z) = fR G(z)dz for |z| < % — 05,
AG(z) =0 for |z > 5+ C9;

see Figure 5 for an illustration. The first bound in (28) is now a consequence of the
trivial estimate | [; G(x)dz| < [supp G| ||G|lsc < C§, whereas the second one follows

from
/ G(z)dx
R

and the refined estimate | [; G(z)dz| < C(1+ [|S||)6%. O

In the general case Is # 0, one finds—due to [, G(z)dz = 2I5 + O(6%)—the
weaker estimate || A?G||s < C(1 + ||S]|)d. This bound is still sufficient to establish
the fixed point argument but provides a corrector S of order O(J) only. Recall,
however, that Lemma 7 shows that shifting W5 and changing Ry allows us to find
correctors of order O(62) even in the case I5 # 0.

We finally derive continuity estimates for G.

LEMMA 13. There exists a constant C, independent of § such that

[ A*G2 — A*Gilloo + [ AG2 — AG1 [l + 8[| G2 = Gilloe < CLIIIS; = Sillo

holds for all §-admissible correctors S1 and Sy with Gy = G(Sp).

Proof. According to Lemma 11, there exists a constant C, such that G(z) =0
for all # with |z| > C4. For |z| < C§, we use Taylor expansions for S; — Sz at x =0
to find

‘(A2G) (x)| <06+ forall zeR

|S2(x) = S1(2)] < (|95 = Sillse |2 ,
where we used that S2(0) —S1(0) = 0. Combining this estimate with the upper bound
for WY gives
C
Gae) ~ Ga(@)] < S2(a) — $1(2)] < €IS — Sl
for all |x| < €0, and this implies the desired estimate for |Gz — G1||cc. We also have

|A2Gy — A%Ghloo < [|AG: — AGH
< Jsupp (G2 — G1)| |G2 — Gl < C§||G2 — G oo,

which completes the proof. a
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3.4. Fixed point argument. Now we have prepared all the ingredients to prove
that the operator

T :=PgoLlLo§G
admits a unique fixed point in the space

Xj = {S Xt ||Sllee < Co82, IS0 < C18, IS0 < 02}.

Here, Ps denotes the projector on the first component, that means Pg(S, ) = S,
and the constants C; are defined by

Cy := Cm(1 + Cy), Cy:=CmCg , Co := CmCg(1+ C2).

Notice that any fixed point of 7 provides a solution to (11) and vice versa.

LEMMA 14. For all sufficiently small 6, the operator T has a unique fixed point
m X(;.

Proof. Step 1. We first show that each S € X is d-admissible provided that ¢ is
sufficiently small. According to Proposition 2, there exist positive constants rg, x,
and dj such that

|Ro(z)| =g for || > m, do < Ry(z) for |z| <o,

and combining the upper estimate for ||Rp|lec with the equation for Ry we find
|RG |loo < Dq for some constant Da. We now set

5'—lmin Lxd 1/r—or x'—ié
0~_2 25_02+017007 0070 ) 5'_d07
and assume that 6 < §g. For any x with |z| < 25 < zg, we then estimate
|Ry() + §'(x) — Ry(0)] < Dows +C16 < (282 + 1 )6 < 3dy < $RY(0),

and this gives 2 R((0) < Rj(z) + 5’'(x) < 2R(0). Moreover, 5 < |z| < ¢ implies

v 2
|R0(x) + S(x)‘ > ‘/ Ri(s)ds| — [|8]|oc || = (do — C10) |2| > $do - d—5 =4,
0 0

whereas for |z| > x¢ we find

Using
z_ :=max{x : Ro(z)+ S(z) < -6}, zy :=min{x : Ro(z)+ S(z) > +d},

we now verify that S is d-admissible provided that § < dg. Moreover, making g
smaller (if necessary) we can also guarantee that G(S) € Y holds for all S € X; and
6 < dp; see Lemma 11.

Step 2. We next show that 7 (Xs) C X;s holds for all § < Jp. Since each S € X; is
0-admissible, Corollary 12 yields

IAG(S) e < Cgd, [ AG(S)]lee < Cg(1 + C2)7,
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and [|G(9)]|eo < 14 Cy holds by definition of G and Assumption 1. Lemma 10 now
provides

[T(S))loo < CrCq(1+ C2)0* = Cod?,
17(S) e < CmCg6 = (40,
17(9) e < Cam(1+ Cy) =Cs,

and hence 7(S) € Xs.

Step 3. We equip X5 with the norm ||.S|| 4 = [|S]|co+|S"]| 0 +8/S”|| s, which is, for
any fixed 9, equivalent to the standard norm. For given Si, Ss € X5, we now employ
the estimates from Lemmas 10 and 13 for S = Sy — 57 and G = G(S52) — G(S1) € VY.
This gives

I7(2) = TSl < CarllA°G(S2) = A2G(S1)llow + CallAG(S2) — AG(S1)
+3CM||G(S2) — G(S1)loo
< CmC1L6)|S5 = Silloe < CMmCrd||S2 = Sill4,

and we conclude that 7 is contractive with respect to ||-||x provided that & <
1/(CmCL). The claim is now a direct consequence of the Banach fixed point
theorem. O

The previous result implies the existence of a three-parameter family of waves
that is parametrized by the speed ¢ € [cg, ¢1] and by Ry, where Ry can be regarded
as a parameter in the two-dimensional L>°-kernel of M.

PROPOSITION 15. Suppose that Is = 0 for all 5. Then there exists dg > 0 with the
following property: For any § < g, each ¢ € [co, ¢1], and any Ry as in Proposition 2
there exists a d-admissible corrector

SeXsn <L2(R) @ span {1, Yy — % cos (ko) , Yo — % sin(kc-)}>

such that R = Ro+ S solves the traveling wave equation (7) for some u. In particular,
we have R(0) =0, the limits

lim (R(z) — a— cos (ke.x) — B sin (kc)) and lim (R(z) — Ro(x))

Tr——00 r——+0o0

are well defined for some constants a—, B— depending on ¢ and Ry, and the estimates
(29) R(x) < =6 for x<-C6, R(x) >+ for x>+4C§

hold for some constant C' > 0 independent of ¢ and Ry.
Proof. For given ¢ and Ry, Lemma 14 provides a unique fixed point S € Xs of T,
which solves

MS = A2G(S) + 1

for some n € R, and this implies that R = Ry+.5 is in fact a traveling wave. Moreover,
by construction—see the proof of Lemma 10—we also have

S=Z+X+f1 <Y1 — %COS (kc)> + fo <Y2 — %sin(kc-)>
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for some constants f1, f2, and A and a function Z € L?(R) with Z(z) — 0 as x — +oo0.
The claims on the asymptotic behavior as x — +00 now follow immediately since Ry
has harmonic tail oscillations with wave number k.. Finally, the fixed point S is 4-
admissible—see the proof of Lemma 14—and this implies the validity of (29) due to
0<zy,—x_ <C0. O

Notice that Proposition 15 yields a genuine three-parameter family in the sense
that different choices of the parameters ¢ and Ry correspond to different tail oscil-
lations for x — -+o0o and hence to different waves R = Ry + S. This finishes the
existence proof of Theorem 3.

4. Uniqueness of phase transition waves. In this section we establish the
uniqueness result of Theorem 3 by showing that the family provided by Proposition 17
contains all phase transition waves that have harmonic tail oscillations for x — 400
and penetrate the spinodal region in a small interval only.

LEMMA 16. Let k > % be given and suppose that Is = 0 for all 6. Then there
exists 0, > 0 such that the following statement holds for all 0 < § < 6,: Let (R1, p1)
and (Rz, p2) be two solutions to the traveling wave equation (7) with speed ¢ € [cg, c1]
such that

R; € Wz’oo(R) s Wi € R, Rl(O) =0
and
Ri(z) <=6 for x< =67, Ri(z) > +6 for x>+

for bothi=1 and i =2. Then, Ry and Ry are either identical or satisfy

Tr—r+00

Ri(z) — Ra(z) — g (cos (kex) — 1) — By sin (kex) — 74

for some constants v4 and (ay, B+) # (0, 0).
Proof. For given R;, Rg, there exist constant i, ue € R such that

M(Ry — Ry) = A%G + pig — a1 G := W5(Ry) — W5(Ry) .

By assumption and due to the bounds of ¥4 we also find G(z) = 0 for |z| > " as
well as

|G(2)| < = |Re(2) — Ri(2)] < C6" YRy — Ryl for o] < 6",
and this implies
| AG |os < [supp G[|Gllos < C6**H[[Ry — R oo -
Moreover, Lemma 10 provides S € X as well as n € R such that
MS = LG +n, |9l < COH[Ry = RY oo
In particular, we have

A2G = M(Ry — Ry — (1= &) (o — ) = M(S— (1- 02)71”)-

Since the space of bounded kernel functions for M is spanned by sin (k.-) and cos (k.-),
we conclude that there exist constants oy and 4 such that

Ry(z) — Ri(z) = S(x) — 0 + a4+ (1 — cos (kex)) + B4 sin (kex) + v+,
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where o := lim, 1o S(x) and 4 = (1 — (32)_1(u2 —p1—1n) + 0 — ay. In the case
of ax = 4+ = 0 we therefore find

IR, = Rilloo = 1|80 < C6*" R, — Rl

and combining this with R;(0) = R2(0) we get Ro = R; for all sufficiently small
0. 0
PROPOSITION 17. Suppose that Is = 0 for all § and that k with % <k <1is
fized. Then there exists 6, with 0 < §, < dg such that the following statement holds
for all0 < & < 6,.: Let R be a traveling wave with speed ¢ € [co, ¢1] such that the limit
lim (R(z) — Ro(x))

r—+o0

is well defined for some Ry from Proposition 2 and such that
R(x) < =0 for x<—6%, R(z) > 46 for x> +6".

Then R belongs to the family of waves provided by Proposition 15.

Proof. Let Ry + S be the traveling wave from Proposition 15. By construction,
R— Ry— S converges as x — +oo and for all sufficiently small § we also have C'§ < 6%.
Lemma 16 applied with Ry = R and Ry = Ry + S therefore implies R = Ry +S. a

With Propositions 15 and 17 we have established our existence and uniqueness
result in the special case that Is = 0 holds for all §. The corresponding result for the
general case is then provided by Lemma 7.

We finally mention a particular consequence of our uniqueness result, namely, that
the family from Proposition 15 does not depend on the particular choice of the solution
operator L to the affine problem (11);. At a first glance, this might be surprising since
the operator 7 and hence each fixed point surely depend on £. We can, however,
argue as follows (a similar idea is used in the theory of Lyapunov—Schmidt reduction
in order to show that different projections on the kernel and cokernel yield the same
solutions): Suppose we would choose in the proof of Lemma 10 another reasonable
solution operator £ (for instance, the operator from (21) that does not involve any
kernel function of M). Repeating all arguments from section 3 we then find—for any
given §, ¢, and Ro—a different corrector S € W2°°(R). In general, this corrector S
does not converge as x — +0o but satisfies

S0)=0, |Sle<C8®, |5 <Cs, 8" <C
for some constant C that is independent of ¢, Ro, and . Moreover, we also have
S € L*(R) @ span {1, Y1, Ya, cos (kc-), sin (k) }

that means the tail oscillations of S for both  — —oo and x — 400 are again
harmonic waves with wave number k.. Adding a suitable linear combination of 1 —
cos (k+) and sin (k.-) to Ry we can construct another wave Ry such that Ry and Ry+S
have the same tail oscillations as  — +oo. This function Ry is, at least for small
0, also a traveling wave for the unperturbed problem and hence among the family of
waves provided by Proposition 2. We can therefore use Ry instead of R in order to
define the operator G. Theorem 10, which relies on the oscillation-preserving operator
L, then provides a corrector S that converges as ¢ — 400, and from Lemma 16 we
finally infer that Ry + S = Rg + S because both waves have, by construction, the
same tail oscillations for x — +o00. We therefore conclude, at least for small §, that
changing £ does not alter the family of traveling waves but only its parametrization
by Ro.
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5. Kinetic relations. We finally show that the kinetic relation does not change
to order O(4). To this end we denote by Rs a traveling wave solution to (2) as provided
by Theorem 3. The corresponding configurational force (cf. [TV05, HSZ12]) is then
defined by T := Te)(; — ’rf)(; with

B B (7, 4+ L (rs._) /_ B
Ye,5:= Ps(75,4) — Ps(75,-), Tes:= o{7ss) 2 - )(’"‘H —7’&—),

where the macroscopic strains 75 + on both sides of the interface can be computed
from Ry via

1 +L
75+ = lim 7 Rs(+x)dx.

L—oo 0

LEMMA 18. Let Rs be a traveling wave from Theorem 3, and Ry the corresponding
wave for § = 0. Then we have T5 = Yo + O(6?).

Proof. By construction, we know that the only asymptotic contributions to the
profile Rs are due to Ry — Is plus a small asymptotic corrector of order O(6?) from
span{1l, Y7, Yo}. This implies

Ts+ = To+ — Is + O(6%).
As 79+ and 75+ are both larger than 6 we know that
Wi(7s,4) = F1 = Wy (Ts2) -
Thus, we conclude
O (7s,4) = T+ F 1= ®4(r0,2) — Is + O(6%),
and hence
Yes = Teo— Is(Fo,+ — To,—) + O(6%).

Moreover, we calculate

Tos= | " gy () dr = / W) — W) + W) dr

Ts, — T§, —

- /+ @) (r) dr — /+ (W5(r) = Wo(r)) dr

B (754 ) — o(7s—) — 215 = L(7s 4 — 1)* = L(75 +1)° — 21

= L(Foq — Is = 1)* = L(Fo— — I +1)* — 215 + O(6?)

= L(Fo4 — 1) — 2 (Fo,— + 1) = Is(7foy — 1 — o, — 1) — 215 4+ O(6?)
= To,() — 16(7’70)4_ — 7707_) =+ 0(52) .

Subtracting both results gives Ts = T + O(62), the desired result. O
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