Research

Cellular and molecular mechanisms of regeneration in Xenopus


Reference:

Slack, J. M. W., Beck, C. W., Gargioli, C. and Christen, B., 2004. Cellular and molecular mechanisms of regeneration in Xenopus. Philosophical Transactions of the Royal Society B - Biological Sciences, 359 (1445), pp. 745-751.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.

Abstract

We have employed transgenic methods combined with embryonic grafting to analyse the mechanisms of regeneration in Xenopus tadpoles. The Xenopus tadpole tail contains a spinal cord, notochord and segmented muscles, and all tissues are replaced when the tail regenerates after amputation. We show that there is a refractory period of very low regenerative ability in the early tadpole stage. Tracing of cell lineage with the use of single tissue transgenic grafts labelled with green fluorescent protein (GFP) shows that there is no de-differentiation and no metaplasia during regeneration. The spinal cord, notochord and muscle all regenerate from the corresponding tissue in the stump; in the case of the muscle the satellite cells provide the material for regeneration. By using constitutive or dominant negative gene products, induced under the control of a heat shock promoter, we show that the bone morphogenetic protein (BMP) and Notch signalling pathways are both essential for regeneration. BMP is upstream of Notch and has an independent effect on regeneration of muscle. The Xenopus limb bud will regenerate completely at the early stages but regenerative ability falls during digit differentiation. We have developed a procedure for making tadpoles in which one hindlimb is transgenic and the remainder wild-type. This has been used to introduce various gene products expected to prolong the period of regenerative capacity, but none has so far been successful.

Details

Item Type Articles
CreatorsSlack, J. M. W., Beck, C. W., Gargioli, C. and Christen, B.
DOI10.1098/rstb.2004.1463
DepartmentsFaculty of Science > Biology & Biochemistry
RefereedYes
StatusPublished
ID Code3911
Additional InformationID number: ISI:000221472900002

Export

Actions (login required)

View Item