Research

Citrate synthase from Thermus aquaticus: a thermostable bacterial enzyme with a five-membered inter-subunit ionic network


Reference:

Karlsson, E. N., Crennell, S. J., Higgins, C., Nawaz, S., Yeoh, L., Hough, D. W. and Danson, M. J., 2003. Citrate synthase from Thermus aquaticus: a thermostable bacterial enzyme with a five-membered inter-subunit ionic network. Extremophiles, 7 (1), pp. 9-16.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.

Official URL:

http://dx.doi.org/10.1007/s00792-002-0290-7

Abstract

A bacterial thermostable citrate synthase has been analyzed to investigate the structural basis of its thermostability, and to compare such features with those previously identified in archaeal citrate synthases. The gene encoding the citrate synthase from Thermus aquaticus was identified from a gene library by screening with a PCR fragment amplified from genomic DNA using a primer based on the determined N-terminal amino acid sequence and a citrate synthase consensus primer. Apart from high sequence similarities with citrate synthase sequences within the Thermus/Deinococcus group, the analyzed enzyme has highest similarities with the enzyme from the hyperthermophilic Archaeon Pyrococcus furiosus. The recombinant enzyme is a dimer with high specific activity. Compared to its thermoactivity (Topt at 80°C), the thermal stability of the enzyme is high, as judged from its Tm (101°C), and from irreversible thermal inactivation assays. Molecular modeling of the structure revealed an inter-subunit ion-pair network, comparable in size to the network found in the citrate synthase from P. furiosus; these networks are discussed in relation to the high thermal stability of these bacterial and archaeal enzymes.

Details

Item Type Articles
CreatorsKarlsson, E. N., Crennell, S. J., Higgins, C., Nawaz, S., Yeoh, L., Hough, D. W. and Danson, M. J.
DOI10.1007/s00792-002-0290-7
DepartmentsFaculty of Science > Biology & Biochemistry
RefereedYes
StatusPublished
ID Code4082
Additional InformationID number: ISI:000181259200002

Export

Actions (login required)

View Item