
Gaudl, S. E. and Bryson, J. J. (2014) Extended ramp goal
module:Low-cost behaviour arbitration for real-time controllers
based on biological models of dopamine cells. In: 2014 IEEE
Conference on Computational Intelligence and Games, CIG 2014,
2014-08-26 - 2014-08-29.

Link to official URL (if available):
http://dx.doi.org/10.1109/CIG.2014.6932887

Opus: University of Bath Online Publication Store

http://opus.bath.ac.uk/

This version is made available in accordance with publisher policies.
Please cite only the published version using the reference above.

See http://opus.bath.ac.uk/ for usage policies.

Please scroll down to view the document.

http://opus.bath.ac.uk/
http://opus.bath.ac.uk/

Extended Ramp Goal Module: Low-Cost Behaviour
Arbitration for Real-Time Controllers based on

Biological Models of Dopamine Cells

Swen E. Gaudl
Department of Computer Science

University of Bath
Bath, UK

Email: swen.gaudl@gmail.com

Joanna J. Bryson
Department of Computer Science

University of Bath
Bath, UK

Email: j.j.bryson@bath.ac.uk

Abstract—The current industrial focus in virtual agents and
digital games is on complex systems that more accurately simulate
the real world, including cognitive characters. This trend intro-
duces a multitude of control parameters generally accompanied
by high computational costs. The resulting complexity limits
the applicability of AI in these domains. One solution to this
problem is to focus on light-weight flexible AI architectures which
can be simultaneously generated, controlled and run in parallel.
The resulting systems should then be able to control individual
game characters, scaling up to large numbers of characters,
forming even complex social systems. Here we contribute one
element of such a system: a light-weight systems-engineering
approach for enriching behaviour arbitration in action selection.
Our mechanism—ERGo—improves high-level goal arbitration in
existing light-weight action selection mechanisms. ERGo provides
easy and reliable non-deterministic control of goal switching, ac-
tivation and inhibition, allowing natural behaviour maintenance.
This mechanism can aid agent design in cases where static, linear,
predefined priorities are undesirable. The model underlying our
approach is biomimetic, based on neuro-cognitive research on
the dopaminic cells responsible for controlling goal switching
and maintenance in the mammalian brain. We demonstrate and
evaluate our mechanism in a real-time, game-like simulation
environment, using a previously-published system as a baseline
for comparison. We demonstrate that ERGo is effective, and
betters the previous approach.

I. INTRODUCTION

The mechanism we present in this paper addresses the issue
of responsive and flexible action selection for behaviour-based
AI (BBAI) [1] or similar approaches to light-weight modular
cognitive architectures. We are addressing specifically systems
dealing with multiple possibly conflicting goals. The work
focuses on systems that face resource constraints such that they
are not able or not intended to use a fully fledged cognitive
architecture such as SOAR [2] or ACT-R [3]. Limited CPU
cycles, restricted memory size, or low power consumption
are only a few examples of the mentioned restrictions. In
additional to technical resources, authoring, development and
testing time are also important and expensive resources in
industrial contexts. To demonstrate and allow for a better
understanding of the approach, we present implementation
details as well as the results of an evaluation carried out in
the MASON simulation environment [4].

To clarify the type of problem we are addressing and to
give an inspiration for its solution, we start with an example
which could take place in a generic role-playing or strategy
game. Deciding and maintaining logically sound or human-
believable behaviour is important in games. Maintaining the
suspension of disbelief is of great importance to players [5].

Example Scenario (guard in warehouse):

A player controlling a thief is trying to break
into a guarded warehouse. The guard can perform
behaviours associated with three major goals, patrol,
attack and extinguishfire. The player is moving
towards the warehouse and observes the guard pa-
trolling the entrance. The player moves closer to the
warehouse. Trying to lure away the guard, the player
finds a way to set the back door of the warehouse on
fire. As soon as the fire starts, the guard switches to
extinguishingfire — this is triggered based upon
the game designers’ concept. The player tries to
sneak around the guard but fails as the guard spots
the player while he is moving towards the back en-
trance. The guard switches the active behaviour from
patrol to attack due to spotting a thief. The player
now runs away, chased by the guard. After some
fighting the guard kills the player, then switches back
to patrol as no imminent active threat is visible.

But what happened to the fire the player started? The back
door of the warehouse is still on fire. After attending for a
long period of interactions with the player the trigger signal
for extinguishfire was removed from the stack of sensory
information for the guard. A naive solution would be to let
the trigger remain on the stack indefinitely. For this simple
example it seems a feasible option. But scaling up the problem
to a large set of agents and triggers, not removing stacked
triggers is impossible and even distinguishing which triggers
are still important is a hard problem.

The main point we want to make is, in large design spaces
it is hard for a designer to keep track of all possible scenarios
and interdependencies of behaviours. Additionally designing
game agents that behave in a believable and concurrent way is
already a complex task. Due to the large size of current games
and their underlying control structures it is non-trivial to keep

track of the maintenance and inhibition of timed actions. In
digital games it is quite common to allow the AI only to
occupy a fixed small number of cycles per frame as most
of the computational resources are needed for the graphic
representation. Including a heavy-weight cognitive system to
control multiple agents into such an environment is in most
cases not desirable as the cognitive architecture requires both
more CPU time, and also more time to design. Additionally,
designing the specific cognitive agents themselves is generally
more time consuming than the average static approach to
game characters. In addition, cognitive abilities are usually not
necessary for most agents. In the above example a designer
would create—similar to a writer—a story around what the
guard should do and how she should react to certain stimuli.
Removing this creative process would either result in a huge
impact on the players’ immersion or it would require an
enormous amount of computation to do meaningful story
planning. Game-play designers specialise on creating human-
understandable situations, reactions and characters. Despite
promising research [6], automating this whole creative process
is currently far beyond the current state-of-the-art in dynamic
planning and story generation. The current main interest of
game AI designers and engineers it to have flexible, modular
tools for creating template agents and then modify those to
create the desired outcome [7].

Our current research is motivated by an analysis of existing
cognitive systems, agent architectures and agent modelling en-
vironments for digital game agents. Existing cognitive systems
such as SOAR, ACT-R and LIDA [8] are exceptionally pow-
erful, allowing the creation of sophisticated cognitive agents.
However, due to the high complexity and steep learning curve
they seldom leave academia and even then are mostly used in
specialised communities. Whenever a full cognitive reasoner
or a large knowledge base is not needed or applicable, light-
weight architectures and models such as Behaviour-Oriented
Design (BOD) [9], BehaviourTree (BT) [10], Pogamut [11] or
Advanced Behavior Language (ABL) [12] can be used. Those
systems have lower computational costs and less steep learning
curves. They additionally are more fit for non-academic appli-
cation. Light-weight approaches are often used for individual
agents or groups of agents in digital environments [12]–[14].
Due to the flexible nature of the applied approaches, the
resulting system can be tailored towards a specific scenario, re-
ducing computational cost. This contrasts with most cognitive
architectures which are intended as general problem solvers
applicable to a wide range of problems.

To allow developers and researchers to enrich their action
selection and behaviour arbitration mechanism we introduce
the extended ramp goal model—ERGO—which is generally
applicable to a broad range of systems. ERGO comes with a
low computational overhead allowing it to be instantiated many
times, making it highly versatile. It allows for an easy way
to control the maintenance, inhibition and switching of high-
level behaviours in cases where static or pre-defined behaviour
arbitration is undesirable for the action selection mechanism.
The model is biomimetic, based on mechanisms found in the
dopaminergic cells in the Basal Ganglia of the mammalian
brain [15], [16].

The rest of this paper is organised as follows. In the
next section we describe our current research on biomimetic
models and their applicability to behaviour arbitration, and
introduces the extended ramp goal model—ERGO. We include
implementation details and a code example on how to integrate
our approach into existing arbitration mechanisms. To support
our argument we then present the results of an evaluation
performed in a real-time, game-like simulation environment,
using a previously-published system as a baseline for com-
parison. The paper concludes with a discussion on the impact
of different parameters on the model, next possible steps and
future work.

II. THE EXTENDED RAMP GOAL MODEL (ERGO)

In this section we discuss our biomimetic mechanism and
its implications on scalable behaviour arbitration. We start by
presenting our motivation for applying biomimetic concepts
to action selection schemes. This illustration of the current
state leads to our argument for the ramp-function arbitration
mechanism.

A. Approach: Biomimetic Models

We took Flexible Latching [17] as a starting point for
our research. Flexible Latching starts from a simple latch, see
Figure 1, which reduces dithering—a rapid switching between
goals. When dithering, more time is spent transitioning be-
tween goals than in their useful pursuit and consummation.
Without a latch, a goal executes once the trigger condition
is met and stops immediately thereafter. A latch thereby acts
similarly to a hysteresis function.

Fig. 1. A Flexible Latch using two thresholds—δ and φ—to control dithering.
In a simple latch, a goal can take control from when activation reaches the
lower boundary δ until is reaches the upper boundary φ. Reaching φ, the goal
is inhibited until activation falls below δ again. A flexible latch adds a third
threshold, ψ, above which a latch is recomputed if the agent is interrupted.
The best threshold for ψ was found to be ψ = δ [17].

For the sake of an illustration, imagine following example:

A leaking canister looses water over time. As
soon as a low water level, threshold φ, is reached,
the canister is filled up again to that level. If you only
refill up to φ whenever the water is below φ, the time
between each re-fill is relatively short. A strict latch
now adds another threshold δ on top of the lower
threshold. Now, whenever the water reaches φ you
spend your actions to refill the water until is reaches
the higher level, threshold δ.

Such a latch is useful under the assumption that it takes
time to start and complete an action. The strict latch allows
extra time between δ and φ which can be spent on alternative
actions. Flexible Latching extends the Strict Latching by
dealing with interrupts and re-evaluating whether the current
goal should still be pursued. It was shown to be more efficient
[17], as the agents do not pursue goals that are neither urgent
nor convenient after the interruption.

Among other nature-inspired action selection mechanisms,
neural networks (NNs) are the most prominent. Using a neural
network, it is possible to learn and solve selection tasks for
problems where an algorithmic description of the problem is
not known or costly. The NN is able to approach a solution
only by providing it with known input-output pairs to adapt
itself towards the solution space. However, for NNs the overall
action selection or computational process is not transparent,
thus ‘tweaking’ them to perform in a certain way is difficult.

Moving from larger neuronal structures to a single neuronal
model reveals some interesting underlying mechanics which
can be exploited in other contexts as well. There exists a
variety of activation functions for neuronal models. Those
include the spike or Dirac used in spiking neural networks, the
sigmoid which has a fixed output range between zero and one,
and the ramp function which combines a monotonic increased
activation and an instant activation drop.

Biomimetic models like NNs are an important asset of the
computer science tool-set. They present scalable solutions for
addressing complex problems. We found that in nature, the
ramp function is favoured for goal arbitration [18]. Current
research [15], [16] suggests, that dopamineric cells in the Basal
Ganglia of the mammalian brain are likely to be responsible
for the maintenance and switching of goals. During the pursuit
of a single goal those BG cells exhibit a ramp-like activation
in a goal related area of the brain. This finding motivates our
present approach as we believe it to be a simple and elegant
mechanism.

B. Basic activation mechanism

The two important features of the exhibited ramp-like
activation in the brain are a linear growing activation and a
rapid activation drop, see Figure 2. We use the hypothesis that
brains exploit ramp functions to arbitrate between high-level
goals as the basis for our light-weight arbitration mechanism,
ERGo. In contrast to most ramp function related selection
approaches [19], [20] which apply ramp functions in the
context of neural networks, our approach is the first attempt
to apply a ramp-like criteria directly to a behaviour-based
arbitration process without using a neural network to control
the maintenance. For the models presented in this paper, we
decided on a strictly monotonic activation gain and an instant
activation drop when reaching the success criteria for the goal.
This provides a predictable yet flexible mechanism.

Using a generic behaviour-based action selection mech-
anism we illustrate how the extended ramp works. For a
given set of behaviours1 B = {B1, . . . , Bm},m ∈ N we

1Note that we use behaviour here to mean a collection of actions, senses
and other cognitive state necessary for achieving a particular goal. In many
architectures, behaviour decomposition is actually orthogonal to goals—one
action can serve multiple goals.

introduce a set of goals G = {G1, . . . , Gm} and ramps
R = {R1, . . . , Rn}, n ∈ N, n ≤ m. Ra is the ramp for Ba and
Ga is the goal which Ba is trying to satisfy, a ∈ {1, . . . , n}.
The additional behaviours Bb, b ∈ N, b ≤ m− n try to satisfy
goals Gb without being augmented with a ramp. Each time step
t Ra adjusts its activation based on the boolean activation state
αa(t) of the behaviour Ba, the boolean urgency signal υa(t)
and the stickiness ωa(t) of the behaviour. All ramps share the
same increment i and activity multiplier µ which define the
accumulated activation in the following way.

Ra(t) =


Ra(t− 1) ∗ µ if υa(t) = 1

Ra(t− 1) + i if αa(t) = 0

Ra(t = 0) if αa(t) = 1 ∧ ωa(t) = 0

Ra(t− 1) + (i ∗ µ) if αa(t) = 1 ∧ ωa(t) > 0

The influence of an active behaviour on the activation is
presented by αa(t) = 1 and ωa(t) > 0. This results in an
activation modified by our activity multiplier µ.

Ra(t) = Ra(t− 1) + (i ∗ µ)

The increased activation is supported by the work of Redish
[18]. He states that the goal cell in the Basal Ganglia have a
higher firing rate when that related goal is pursued. Even when
a behaviour is not active it still gains activation.

Ra(t) = Ra(t− 1) + i

The combination of those two mechanisms removes most
of requirements of needing a direct binary switch for the
behaviours to arbitrate successfully. We believe that this min-
imizes the direct competition between behaviours as well
and increases the robustness of the action selection in cases
of noisy switching signals. Thus, our approach contrasts the
currently available selection principles in games. These heavily
use binary triggers as they are initially easy to implement and
understand.

Fig. 2. A single ramp function used for inhibiting a behaviour. A behaviour
controlled by a ramp is only inhibited when another behaviour gains a higher
activation or once its goal is reached. Once the goal is reached activation
instantly drops. The behaviour completes its goal at time a with a certain
activation b.

To allow the agent to influence whether a behaviour needs
to be urgently triggered, the agent is able to trigger the urgency
signal υ. Upon receiving the signal, the ramp amplifies its
activation using the activity multiplier µ—a percentage based
influence on the global action selection. Using µ for urgent

execution results in an exponentially growing activation level.
An example for an amplified behaviour is Behaviour3 in
Figure 3 which is triggering υ3 at t = 41. For our experiments
we set µ to a value within the range of 1.0 and 2.0. If
µ = 1.0, activation is not affected by the urgency signal at all.
If µ = 2.0, the activation is increasing quadratic. We have not
yet investigated the impact of negative urgency has on agents.
Negative urgency would be reflected by 0 < µ < 1.0 and
would result in a decay or dampening of the activation level. If
Ba needs to urgently execute, υa is set to true. This indicates
the need for a rapid behavioural change. The result of using
the urgency signal υ is again inspired by natural phenomenon
inside the mammalian brain, where it takes a small amount of
time for the activation to spread before even urgent actions are
executed. The time span between the trigger and the execution
of the behaviour however is short.

As one of our aims is to simplify the action selection
process we focus on as low coupling of the ramp goal
model with the rest of the agent as possible. Thus, we limit
the parameters to υ, an urgency signal, and µ, with which
we amplify the activation of our model. Using only these
asynchronous signals, we do not need to include problem-
specific components like agent specific resource properties
in the control. This makes ERGo easier to comprehend and
integrate with other architectures as the properties should
normally be handled directly by the behaviour primitives.

C. Duration of activation

Action selection requires both recognising when to start
a goal, and also how long to pursue it. In ERGo, a goal
and its associated behaviours become active when one goal’s
activation is higher than others. Activation continues building
until another threshold is reached, then it drops to zero (see
Figure 3). This duration is controlled via the stickiness ω of
goals in our mechanism. This was also inspired by mammalian
behaviour. When feeding after a period of reduced available
resources, animals do not stop feeding even if their stomach
reached its capacity. This is referred to as binging [21].
However, just as with the latch, performing behaviour for
enough time to build up reserves should be viewed as a
normal part of action selection. For an active behaviour Ba,
once its goal conditions are met—αa = 1 and the agent has
accumulated enough resources of one type to reach δ—the
stickiness is decreased until is reaches zero. During this time
the behaviour still accumulates activation. In other words, the
agent—even though the goal Ga is met—continues to pursue
Ga until ωa = 0.

Ra(t) = Ra(t− 1) + (i ∗ µ)

The only way to interrupt this is either by having a higher
activation due to an urgency signal or due to an environmental
interrupt which disturbs the current behaviour and resets the
activation to the lower boundary. Both phenomena are also
present in nature. For example, an animal is feeding and a
predator jumps out of cover. If the current feeding behaviour
is not instantly interrupted the animal would simply die. The
stickiness ω of ERGO is similar to a latch but is encapsulated
within ERGO. Its purpose is to allow the agent to handle
environments where resources are sparse. It is part of our

internal model and hidden from the agent to allow for an easier
integration minimizing the parameters exposed in the agent to
reduce the cognitive load during design time.

D. Integration

In the following subsection we present the integration of
ERGO into a specific agent model and simulation2. In our
description of the extended ramp so far has largely focused on
explaining the mechanism of a single ramp. The interaction
between multiple ramps is handled within the execution frame
of each augmented behaviour. Whenever a behaviour tries to
gain the control it is validating if other behaviours have a
higher activation—a mechanism similar to the Basal Ganglia.
If those can execute they will suppress the behaviour trying to
gain control. Thus, there is always only one behaviour Bn ∈ B
of augmented behaviours active. Due to this restriction we
are conforming with the rest of the underlying hierarchically
ordered action selection mechanism without overriding the
general priority scheme.

The used action selection mechanism is the parallel-rooted
ordered slip-stack hierarchical planner (POSH) [9]. Due to
the modular nature of POSH we can integrate ERGO as an
additional subcomponent into the action selection mechanism
without having to change large portions of existing code or
the general action selection scheme. To allow for a better
comparison of the results we modified the original Flexible
Latching [17] code base which is freely available.

def a d r i n k (s e l f) :
i f s e l f . i n t e r . s h o u l d i n t e r r u p t (s e l f . ene rgy) :

G o a l C e l l . r e s e t (s e l f)
s e l f . p r e v t a r g e t l o c = s e l f . d r i n k t a r g e t . l o c
s e l f . t a r g e t =None
s e l f . s i g n a l i n t e r r u p t ()
s e l f . i n t e r . i n c r e a s e c o u n t ()
re turn 0

i f not s e l f . t a r g e t . a g e n t . R e s o u r c e s . s h a s f o o d l e f t () :
s e l f . s i g n a l i n t e r r u p t ()
s e l f . t a r g e t =None
re turn 0

s e l f . t a r g e t . a g e n t . R e s o u r c e s . a r e d u c e f o o d l o a d ()
s e l f . ene rgy += common increment

i f s e l f . ene rgy > common upper :
s e l f . r e a c h e d g o a l ()
re turn 0

re turn 1

Code 1: Python code illustrating the inclusion of ERGO into
an existing goal module.

The agent’s action is in our case split into three distinct
parts, see Code 1. The first part–line 1 to 8–is responsible
for environmental interrupts. Those are controlled by the
simulation environment. If the ramp should reset the activation
it is triggering GoalCell.reset(self). This results in a re-
evaluation of the internal activation. The second part until line
16 is responsible for leaving a food patch when it is empty or
to feed on a resource patch.

The last part is referring to the goal criteria, telling an agent
that it is done accumulating resources and that the ramp could

2The simulation itself is discussed in the subsequent section.

Fig. 3. Internal activation levels of three behaviours using ERGO. From time t = 0 to t = 9 and t = 30 to t = 39 Behaviour1 is active having a
higher activation. At time t = 9 the success criteria for the first behaviour is met and the activation drops resulting in the activation of the second behaviour.
Behaviour2 is active from t = 10 to t = 19 where its goal is reached. As all behaviours have the same inclination, they automatically schedule into an
activation pattern. At t = 41 the urgency signals is triggered for Behaviour3 resulting in an exponential gain of activation and an activation at t = 47.

def r e a c h e d g o a l (s e l f) :
i f not s e l f . a c t i v e :

re turn
i f s e l f . s t i c k y > 0 :

s e l f . s t i c k y −= 1
e l s e :

s e l f . a c t i v a t i o n = s e l f . lower bound

Code 2: ERGO’s reached goal definition, reducing the stick-
iness if the goal criteria is met.

now drop activation. This is done inside the reached goal
method which is reducing the stickiness and resetting of the
ramp once the stickiness is zero.

E. Summary

Current research on the Basal Ganglia suggests that the
goal maintenance in the mammalian brain is controlled by
a ramp-like activation function. Here we present a new
mechanism—ERGO—which extends the application of the
ramp beyond neural networks to more abstract and light-weight
action selection systems. The augmented behaviour is able to
react to sudden changes in the environment. The communica-
tion between the extended ramp and the behaviour is through
a well defined and sparse signal flow. The implementation is
using a low-cost computational model of the ramp and is based
on a Python agent using POSH [9] action selection.

In the next section we describe our test domain where
multiple conflicting goals can arise for an agent. Natural agents
from single cell paramecia to human beings face this situation
constantly, and so should believable game characters. For
example, a small child indecisive if it should sleep because
it is tired or continue to play because it is fun.

III. EVALUATION

We choose Behaviour Oriented Design (BOD) as our light-
weight architecture test platform. BOD allows the description
of cognitive agents utilising the parallel-rooted slipstack hi-
erarchical (POSH) dynamic plan structures. POSH includes
a linear goal structure where each goal has a fixed priority

with respect to the others, although each goal can be inhibited
either by having un-met preconditions or through a system of
scheduling. One reason POSH is well-suited for our experi-
ments is because it has already been fitted with a modification
to this structure to allow more biologically-plausible action
selection. This mechanism is Flexible Latching [17] described
earlier in section II-B. As a simulation environment we use the
MASON simulation platform [4] because of its well-defined
and easy to use Java interface, for ease of comparison to
previous work.

The simulation environment is a refinement of the example
domain from Gaudl & Bryson [22] and similar to Sim1 used by
Rohlfshagen & Bryson [17]. The world contains two resource
types, water and food, equidistant from the centre of the map
in 150 units. The world is 600 by 600 units and the agents
start at the centre of the map, see Figure 4.

Fig. 4. Simulation Environment in a Mason agent simulation. The world is
600x600 units. It contains two food and two water sources equidistant from
the centre. All agents spawn at the centre at time t = 0.

Agents can travel two world units in any direction for every
tick of the system clock3. The map is wrapped around the

3To simplify our model we are using discrete time steps instead of real-time
calculations which not only allows more fine-grained control it also allows us
to speed up our simulations beyond real-time.

horizontal and vertical edges. If an agent travels only in one
direction it will create a circular path around the world. Due
to the layout of the map there is no benefit from travelling
over the map edges as the distances are exactly the same.
It is also noteworthy to mention that an agent cannot block
a path, resource, or another agent in any way, which would
be possible in nature but introduce unnecessarily complicated
dynamics for the task at hand. The only time agents interact
is during grooming.

Each agent constantly uses 0.1 resource units of water and
food each tick to survive, simulating natural metabolic costs
and presenting the problem of self sustenance. The amount of
energy needed does not change during the simulation even if an
agent does not move. If an agent’s accumulated store of one of
the two resources drops to zero, then the agent dies. All agents
are initialized within a lower boundary δ and upper boundary
φ for the two resources. Whenever an agent is feeding from
one the resources it gains energy, 1.1 units of the resource.
The gain is set to be larger than the consumption otherwise
the agent would have no chance of surviving. For our setting
the gain is set to ten times the metabolic cost.

To allow the agent to track when it urgently needs to feed
on a resource, we make its intelligence sensitive to when
its units of a specific resource drop below δ—an artificial
threshold we use to model hunger. Whenever the units reach
the upper bound φ the agent is programmed to detect that
it has satisfied the need for that resource, so that it may
distribute its time across other of its goals. The shortest path
between one food and water resource requires an agent to
spend approximately 10 units of both resources which is the
amount it can gain from feeding for one tick.

Fig. 5. A condensed view of a drive collection. It specifies the behaviour
of one of the agents in the simulation and contains four behaviour drives,
prioritized top to bottom. Drives B1 and B2 have equal priority, meaning they
are equally important and their priority must be arbitrated in some sensible
manner so both can be achieved.

In Figure 5 we present a simplified version of a POSH
action plan. This plan is used for all agents in our simulation.
Each agent has four drives which are prioritized based on each
drive’s position in the action plan. The higher the drive in the
plan the higher its priority. Each drive is designed to satisfy a

specific goal of the agent, for example drive B1 represents the
need to drink. In POSH those goals are specified by internal
or external senses, in this case the sense wantstodrink. There
is a special case which is behaviour B4– the lowest-priority
drive. The lowest drive should always be able to execute as
it is treated as a fallback as well. If no drive can be executed
the plan terminates and the agent will stop and terminate as
well. The behaviours B1 and B2 have equal priority indicating
they are equally important to the agent—both are required
for its survival. At this point we introduce our biomimetic
augmentations to ensure that both drives are met in an efficient
way, with neither dithering nor neglect.

IV. RESULTS

Fig. 6. Comparing the three behaviour augmentations Static Latch, Flexible
Latch and ERGO. Illustrated is the change in invested time for an interrupt
progression i = [0, 1, 2, 3]. As the interrupts increase the Static Latch becomes
unable to arbitrate behaviours appropriately. This results in a high death of
agents. ERGO and Flexible Latch are able to adapt to the interruptions. ERGO
agents remain significantly more alive.

We ran an initial set of 15 independent trials per pa-
rameter to analyse the influence of each tested parameter on
the augmentation and re-ran all simulation with the Flexible
Latching model to have a direct comparison on the same
system. We allowed each trial 5000 ticks, as in most cases the
simulation either converged to stable state (death of all agents
or stable surviving agents) before that time. We increased the
number of trials to 50 where we reached stable results with
a low standard error. We first started to analyse how well
both approaches—Flexible Latching and ERGO—are able to
handle non hostile environments. In non hostile environments
both models perform well. Due to the random initialisation
of the resources for each agent’s internal storage the standard
deviation for all agents can be quite large. We compensate for
this with the larger number of trials.

To judge the quality of a well performing augmentation we
use following evaluation criteria:

1) time the agent remains alive,
2) time left for individual behaviours beyond those

needed for survival,
3) robustness in face of noise and interruptions, and
4) programmability.

For the experiments we set the lower threshold δ = 40
and the saturation threshold φ = 44.5. First we tested the
augmented agents without interrupts. In all trials for this setting
all augmented agents remain alive, see Figure 6 first three

bars. Both Latches invest a fixed amount of time on the
two highest priorities and then spend the remaining time on
lower priorities. As exploration does not have any additional
requirements compared to grooming the largest fraction of
time is invested in it. As grooming and exploring are not
life essential to the agent and grooming has the additional
requirement of having a grooming partner, ERGO invests far
more time in exploration than both latches and less time
in grooming. For future work we might need to introduce
a need or motivation for the agent to groom. This result
is based on the mechanisms underlying the Latch where a
fixed threshold guarantees that extra time is invested in other
actions. ERGO’s stickiness ω however applies a more dynamic
criteria resulting in generally more actions to be invested in
all goals. Additionally, those actions can be interrupted more
easily which is visible in Figure 7 once the interrupts increase.

As the interrupts increase from i = 0 to i = 3 the
Static Latch is persisting on executing actions which are not
advantageous. Flexible Latch is able to handle the interrupts
better than Static Latch, visible in the lower death rate. It scales
down all actions equally. This puts a high pressure on the agent
as the life essential actions are also reduced. ERGO scales best
as urgent behaviours inhibit others from executing when they
need to execute instead. Life essential behaviours maintain the
highest priority but lower level goals are still pursued.

Fig. 7. Comparing the effects of interrupts on the priority hierarchy
of behaviours—demonstrated by comparing total primary ans secondary
behaviours. The amount of higher and lower priority behaviours is nearly
equal for both Latches allowing an equally high proportion of lower priority
behaviours to be executed. Once interrupts increase, the Static Latch is unable
to remain in a stable state—most agents die. Flexible Latch and ERGO scale
down the amount of actions when interrupts increase. However, the actions
for Flexible Latch are decreasing disproportionate compared to ERGO.

Figure 6 illustrates how the differentiation between lower
and higher priority behaviours in handled in both Latches and
ERGO. With increased interrupts ERGO and Flexible Latch
scale down but ERGO maintains a similar ratio of higher and
lower prioritised behaviours.

As ERGO responds only to signals by the agent it does
not optimize free time as efficiently as the hand-tuned Flexible
Latch. However, our approach minimizes the interdependence
with the specific parts of an agent. Thus, increasing robustness
and programmability in our agents. We have not specified
problem dependent parameters in ERGO to allow for a better
integration into other action selection mechanisms.

We focus with the current experiments on noise in the
decision process and especially on interrupts. Thus, allowing

us to analyse how well an agent is able to handle non-
scripted situations, e.g. unpredicted player interactions in a
game. Increasing the interrupts is in some ways similar to
players probing or testing an agent or system by trying to
find a way of breaking it. In heavily scripted games or full
information games the agents are normally not affected by
such attacks. However the more agency, dynamic planning
and uncertainty is introduced into games, the easier it is to
break the agents due to the need to react to different stimuli
depending on the situation.

Fig. 8. Influence of increasing numbers of interruptions on death rate
and executed primary actions—eating and drinking—for Flexible Latch and
ERGO. Flexible Latch presents a higher death rate in all settings. For the
number of high priority actions, ERGO and Flexible Latch start equally,
around 1000 actions. As interrupts increase, ERGO performs more high
priority actions until 8 interruptions per successful behaviour .

We present the results of a further interrupt increase in
Figure 8. Here we increase the interrupts from 0 to 10 in a
linear fashion and then increase them as a final step to 20 to see
if some major changes or converging behaviour is emerging.
Two interesting observations are possible from the figure. The
first is the point where death rate and primary actions cross
for each augmentation. This point indicates a shift in the agent
behaviour where on average the agent looses a lot of activity
and liveliness. For Flexible Latching this point is before one
interrupt per goal attempt. ERGO reaches the same situation at
two interrupts. This suggests that ERGO augmented behaviour
at least in our experiments are more resilient in terms of
interrupts. The second observation supporting the previous
suggestion is that, while ERGO is performing a similar aount
of primary actions per simulation, the death rate is always a
large amount lower than for Flexible Latching. Additionally
there is also a larger amount of secondary actions ERGO
performs. It can be argued that a change of latch size or the
lower threshold δ could compensate for that. But the main
point we want to stress is that this hand-tuning can also be
done for ERGO when modifying the stickiness of goals or the
activity modifiers.

Summarizing the results: In this section we presented
experimental results from our evaluation of our extended
ramp goal model—ERGO. We compared our approach with
a similar biomimetic approach—Flexible Latching [17]. Our
experiments stressed the ability of both approaches to handle
noisy action selection based on interrupts in the selection

process. We focused on an environment where action selection
was already difficult. In the beginning of this section we spec-
ified our evaluation criteria defining good results. Throughout
the section we present experimental results indicating that
ERGO is able to handle more interrupts keeping agents longer
alive. We show in Figure 7 that our approach scales well
without sudden quality fall-offs. ERGO is only in the case
of grooming not better than Flexible Latching as this would
have forced us to specify a signal for “enough” grooming,
which was not present in Flexible Latching. However, ERGO’s
integration requires less hand-tuning and ERGO itself is well
encapsulated and more robust, based on its own independent
internal ramp and the usage of asynchronous signals. In the
next section we draw our conclusions from the experimental
results and where we think further investigation is still needed.

V. CONCLUSION

Action selection is a crucial part of digital game AI. As the
game environments get more and more dynamic new ways of
controlling and designing game characters are needed. Here we
present an approach for behaviour augmentation applicable to
a wide range of behaviour based AI techniques such as POSH
[9] and BT [10], only to give two examples. Our experimental
results indicate that ERGO indeed is a robust, generic approach
which provides good results in noisy environments. Due to its
internal ramp and its loose coupling to the character- or game-
specific code of an agent, the inclusion in existing approaches
should be straight-forward. It performs well even when not
adjusted to an experimental setting. For our experiments, all
behaviours use the same configuration of the extended ramp
with the same inclination gain.

Future work should involve optimizing the inclination gain
based on initial priorities of the behaviours allowing a more
fine grained approach to scheduling the arbitration process. To
support our claim of general applicability, including ERGO in
a conventional game environment might allow us to compare
more easily against other approaches, although the Mason
simulation, being real time, does present similar problems. It
would additionally make it easier for professionals to transfer
our approach to different game development tools once it
conforms to an industrial environment, for example Unity3D.

In our setting, ERGO outperforms Flexible Latching [17]
based on our evaluation criteria presented in section IV. As
games evolve—requiring more versatile and scalable tech-
niques to handle dynamic environments—we believe, that
light-weight cognitive architectures and generic approaches to
action selection offer tremendous potential. Thus, we believe
further research in light-weight cognitive architectures and
scalable action selection is needed to provide stable solutions
which are applicable in industry settings.

REFERENCES

[1] R. Brooks, “A robust layered control system for a mobile robot,”
Robotics and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14–23,
1986.

[2] J. E. Laird, A. Newell, and P. S. Rosenbloom, “Soar: An architecture
for general intelligence,” Artif. Intell., vol. 33, no. 1, pp. 1–64, 1987.

[3] J. R. Anderson, Rules of the mind. Psychology Press, 1993.
[4] S. Luke, G. C. Balan, L. Panait, C. Cioffi-Revilla, and S. Paus, “Mason:

A java multi-agent simulation library,” in Proceedings of Agent 2003
Conference on Challenges in Social Simulation, vol. 9, 2003.

[5] J. Murray, “From game-story to cyberdrama,” in First person: New me-
dia as story, performance, and game, N. Wardrip-Fruin and P. Harrigan,
Eds. MIT Press Cambridge, MA, 2004, pp. 2–11.

[6] M. Mateas, “Interactive drama, art, and artificial intelligence,” Tech-
nical Report CMU-CS-02-206, School of Computer Science, Carnegie
Mellon University, December 2002.

[7] A. Grow, S. E. Gaudl, P. Gomes, M. Mateas, and N. Wardrip-Fruin,
“A methodology for requirements analysis of ai architecture authoring
tools,” in Proceedings of the Foundations of Digital Games. Society
for the Advancement of Science of Digital Games, 2014, pp. 198–205.

[8] S. K. D’Mello, S. Franklin, U. Ramamurthy, and B. J. Baars, “A
cognitive science based machine learning architecture,” in AAAI Spring
Symposium: Between a Rock and a Hard Place: Cognitive Science
Principles Meet AI-Hard Problems. AAAI, 2006, pp. 40–45.

[9] J. Bryson and L. Stein, “Modularity and design in reactive intelligence,”
in International Joint Conference on Artificial Intelligence, vol. 17,
2001, pp. 1115–1120.

[10] A. J. Champandard, Ai Game Development, L. Thibault, Ed. New
Riders Publishing, 2003.

[11] J. Gemrot, R. Kadlec, M. Bı́da, O. Burkert, R. Pı́bil, J. Havlı́ček,
L. Zemčák, J. Šimlovič, R. Vansa, M. Štolba, T. Plch, and B. C.,
“Pogamut 3 can assist developers in building ai (not only) for their
videogame agents,” in Agents for Games and Simulations, ser. LNCS.
Springer, 2009, no. 5920, pp. 1–15.

[12] M. Mateas and A. Stern, “A behavior language for story-based believ-
able agents,” Intelligent Systems, IEEE, vol. 17, no. 4, pp. 39–47, 2002.

[13] J. Gemrot, C. Brom, J. J. Bryson, and M. Bı́da, “How to compare
usability of techniques for the specification of virtual agents behavior?
An experimental pilot study with human subjects,” in Proceedings of
the AAMAS 2011 Workshop on the uses of Agents for Education, Games
and Simulations, M. Beer, C. Brom, V.-W. Soo, and F. Dignum, Eds.,
Taipei, May 2011, pp. 38–62.

[14] S. E. Gaudl, S. Davies, and J. J. Bryson, “Behaviour oriented design
for real-time-strategy games – an approach on iterative development for
STARCRAFT AI,” in Proceedings of the Foundations of Digital Games.
Society for the Advancement of Science of Digital Games, 2013, pp.
198–205.

[15] R. Cools, Chemical Neuromodulation of Goal-Directed Behavior, ser.
Strüngmann Forum reports. Cambridge: MIT Press, 2012, ch. Search,
Goals, and the Brain, pp. 111–125.

[16] J. W. Brown and D. E. Nee, Executive control of cognitive search, ser.
Strüngmann Forum reports. Cambridge: MIT Press, 2012, ch. Search,
Goals, and the Brain, pp. 69–80.

[17] P. Rohlfshagen and J. J. Bryson, “Flexible latching: A biologically-
inspired mechanism for improving the management of homeostatic
goals,” Cognitive Computation, vol. 2, no. 3, pp. 230–241, September
2010.

[18] A. D. Redish, Search Processes and Hippocampus, ser. Strüngmann
Forum reports. Cambridge: MIT Press, 2012, ch. Search, Goals, and
the Brain, pp. 81–96.

[19] T. C. Stewart, T. Bekolay, and C. Eliasmith, “Learning to select actions
with spiking neurons in the basal ganglia,” Frontiers in Neuroscience,
vol. 6, no. 2, pp. 1–14, 2012.

[20] J. D. Velsquez, “Modeling emotion-based decision-making,” Emotional
and intelligent: The tangled knot of cognition, pp. 164–169, 1998.

[21] W. F. Mathes, K. A. Brownley, X. Mo, and C. M. Bulik, “The biology
of binge eating,” Appetite, vol. 52, no. 3, pp. 545 – 553, 2009.

[22] S. E. Gaudl and J. J. Bryson, “A biomimetic model of behaviour
arbitration for lightweight cognitive architectures,” in Philosophy and
Computers, ser. APA Newsletter, P. Boltuc, Ed. The American
Philosophical Association, 2014, [submitted].

[23] P. Todd, T. Hills, and T. Robbins, Cognitive Search: Evolution, Algo-
rithms, and the Brain, ser. Strüngmann Forum reports. University Press
Group Limited, 2012.

