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We propose the dynamical creation of twin Fock states, which exhibit Heisenberg-limited interferometric
phase sensitivities, in an optical lattice. In our scheme a two-component Mott insulator with two bosonic atoms
per lattice site is melted into a superfluid. This process transforms local correlations between hyperfine states
of atom pairs into multiparticle correlations extending over the whole system. The melting time does not scale
with the system size which makes our scheme experimentally feasible.
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Degenerate atomic Bose and Fermi gases [1] provide an
excellent starting point for engineering almost pure many-
particle quantum states which are an essential resource for
novel quantum technologies. This is illustrated by the real-
ization of a Mott insulator (MI) [2] in the lowest Bloch band
of an optical lattice which can serve as a quantum memory
[3]. However, new methods are necessary for attaining some
of the most important N-particle states, in particular those
that allow a sensitivity enhancgment from the standard quan-
tum limit proportional to 1/VN to the Heisenberg limit pro-
portional to 1/N in quantum metrology [4]. Here we propose
a method for engineering twin Fock states [5] starting from a
two-component MI with two bosonic atoms per site in an
optical lattice [3,6]. Our scheme manipulates the hyperfine
states a and b of atom pairs pinned to single lattice sites and
decoupled from one another in the MI regime. In this limit
the dynamics is reduced to a set of identical two-particle
problems and correlations between states a and b are accu-
rately induced using Raman laser pulses or microwaves and
collisional interactions controlled via Feshbach resonances
[7]. These local two-particle correlations are then trans-
formed into multiparticle correlations extending over the
whole system by melting the MI into a superfluid (SF). This
quantum melting can be experimentally implemented by
adiabatically ramping down the depth of the lattice potential
[2] as shown in Fig. 1(a). By an appropriate choice of corre-
lations created in the MI phase a twin Fock state emerges in
the resulting two-component superfluid. Using this state in a
Mach-Zehnder interferometer (MZI), shown in Fig. 1(b), one
can approach sensitivities scaling as 1/N.

Our method is motivated by theoretical and experimental
evidence [2,8] that long-range correlations build up quickly
when melting a MI to a SF. Almost adiabatic melting can be
achieved with ramping times 7, on the order of a few tens of
N/MJ, where J, is the typical tunneling amplitude between
lattice sites during the melting process and M is the number
of lattice sites [8]. Importantly, in our scheme M xN, thus
preventing 7, from scaling with N. The achievement of sen-
sitivities at the Heisenberg limit relies acutely on the relative
number of atoms entering each port of the interferometer.
This stringent requirement rules out simple schemes involv-
ing either a /2 rotation into a two-component Bose-
Einstein condensate (BEC) or a rapid splitting of a single-
component BEC in a double-well potential, since both result
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in a binomial relative number distribution. While number
squeezing to a twin Fock state could be achieved in the latter
case by an adiabatic splitting, this time scale #,<N since
M=2 is fixed [8,9]. In contrast, the smaller ¢, for our scheme
is less demanding on the suppression of dissipation which is
known to degrade the achievable sensitivities [10,11]. We
note another promising route to generating a twin Fock state
through the coherent dissociation of a molecular BEC as
suggested in [12].

Our starting point is a MI with two atoms in each lattice
site i given by |W,)=II|ab),; [6,13]. This state, with exactly
the same number of a and b atoms, can be created by colli-
sional interactions involving an auxiliary state c¢ as
experimentally demonstrated in [6]. We analyze the melting
of |W,), and also of the superposition state |[¥,..;)
=I1,(|aa);+|bb);)/\2 obtainable from |¥,) by applying a
/2 Raman pulse. For this we use the two-component Bose-
Hubbard model describing the dynamics of atoms trapped in
the lowest Bloch band of a sufficiently deep optical lattice.
The corresponding Hamiltonian is (A=1) [2]
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where d; (b;) is the bosonic destruction operator for an a (b)

atom localized in lattice site i, 7i*=d]d;, and ﬁf’:éjéi, while
(i,J) denotes summation over nearest neighbors. The param-
eter J,p) is the tunneling matrix element for atoms in state a

(b); V) and U are the on-site intra- and interspecies inter-
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FIG. 1. (Color online) (a) Melting of a two-component two-
atom MI into a SF. (b) The internal states a and b represent the arms
of an interferometer with rotations R1, R2 and phase shift ¢ in-
duced by a Ramsey pulse sequence; ¢ is measured by M.
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action matrix elements, respectively. For simplicity we only
consider the symmetric case with J,)=J, V,»)=V. The ratio
between the matrix elements is determined by the lattice
depth [2] and additionally U, V can be controlled via Fesh-
bach resonances [7] or by shifting the a and b atoms away
from each other using state-dependent lattices [3]. We denote

the total number of atoms in state a (b) as Na(b)=2,-ﬁf(b) and
introduce Schwinger boson operators szﬁi(djl;i+l;j&i)/ 2,
J,=Saib;-alb)/12i, J.=(N"=N")/2, and J=(J,,J;,J.).

We illustrate the outcome of melting two-component MI
ground states with fixed total particle number N=2M assum-
ing adiabatic evolution in an M-site system with periodic
boundary conditions. The melting starts deep in the MI re-
gime, where J can be neglected. For U<V the nondegener-
ate MI ground state is |W,,) and this adiabatically melts into
the nondegenerate SF ground state |W)=|N/ 2>A0|N/ 2)s,

o (A, YM2(B,")M2|vac) for V/J— 0. Here all N/2 a atoms are
in the same delocalized symmetric mode AOOCE,-&i, all N/2 b

atoms are in mode ZA?OOCEJ;,-, and |vac) is the vacuum state.
Thus, adiabatic melting of |¥,,) provides a direct means of
obtaining a twin Fock state |W,) with zero relative atom
number difference.

In the opposite case U>V the system exhibits spatial
separation of the a and b components and has a large
number of degenerate ground states. For an even number
N, of a atoms this degeneracy is lifted by completely
connected hopping [14] and the state |‘lfi\2i))
=5{li=n m)laa)lly jo<j<n|bb);} is adiabatically connected
to the nondegenerate SF ground state [N, [N=N,)p,, where
S denotes symmetrization over lattice site configurations.
Our second initial state |¥,,,,,) is a binomial superposition

of ground states |\If’s\i‘l’)> and therefore results in the melted
state
NP2
1 N2\
|q,mac> = /WE ( ) |2m>A0|N_ 2m>BO‘
V2N 0 \ M

After rotation, the overlap of this state with the macroscopic
superposition state [15] |\I’max>=(|N)AO|O)BO+|O>A0|N)BO)/\52
is found to be O=[(W,.lexp(im],/2)|W . )=¥8/9>0.97
for N—o and this limit is monotonically attained with
0>0.97 for N>20.

We can use either of the final states obtained by adiabatic
melting to realize sensitivities proportional to 1/N in the
MZI setup shown in Fig. 1(b). For the twin Fock state |W )
R1 implements the conventional beam-splitter operation

exp(imJ./2). In the case of |W ) R1 rotates the state ac-

cording to exp(iﬂ'jy/ 2) as discussed above. Then a relative
phase ¢ is induced in one of the arms of the MZI. The
operation R1 can be implemented by rapid resonant /2
Raman pulses, while the relative phase ¢ could be induced
by an appropriate off-resonant pulse. The achievable phase
sensitivity inside the interferometer (after R1) can be com-
puted from the relative phase probability distribution P(6).
For a given state [¢)=3"_,C,,|m), [N- m)s, this is computed

n

as P(AO)=[=V_,C, exp(—imA0)|%/(s+l) where Af is a
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FIG. 2. (Color online) The amplitudes |C,,|*> (left and bottom
axes) and corresponding relative phase probability distribution P(6)
(right and top axes) after the rotation R1 of (a) |¥y) and (b) | W .0)
with N=20.

multiple of 27/(s+1). The distribution P(#6) is obtained by
multiplying P,(A6) with (s+1)/27 and taking the limit
s— oo [11]. As shown in Fig. 2(a) P(6) is sharply peaked for
the rotated | W) and Fig. 2(b) displays the oscillatory behav-
ior of P(6) for the rotated |W,,,.). The sensitivity ¢ of each
state is quantified by the half width at half maximum of P(6)
around some fixed phase typically taken as #=0. From this
definition it can be shown for both states that d¢poc1/N and
so scales at the Heisenberg limit [5,11,15]. The final step in
the MZI consists of rotation R, and measurement M of a
phase-dependent quantity which exhibits this Heisenberg-
limited phase resolution. For instance the measurement of
parity as discussed in [16] or j% as proposed in [17] can
achieve this. These methods exploit nonlinearities caused by
atomic collisions and are thus realizable in our setup.

We now analyze the achievable sensitivity for incomplete
melting at finite (residual) values of V/J before considering
experimental imperfections arising from nonadiabatic ramp-
ing and particle loss. We restrict our considerations to the

measurement of jf and to the twin Fock state due to its
greater experimental feasibility. We study these effects in

terms of the noise A¢ on the ¢-dependent observable jz
Error propagation theory gives Agp=AJ?/|KJ)/a¢| where
(.}f) and Ajg are the average and the spread, respectively. For

states that are zero eigenvectors of jz, such as W), this
gives

~ sin? ¢(<jj) - (ji)z) + cos? ¢<jxjfjx>
4 cos? d)@%}z '

Ag? (2)

At ¢=0 the sensitivity reduces to Ap(0)=3(J2"""> which
can be expressed entirely in terms of the one-particle
density matrices p%:(djdj) and pZ:(l;:fZ;) using <j§)
:[Ei(p?ﬁpfi)+Ei,j(pfjpjb-i+H.c.)]/4. The initial MI state | ¥ ,)
with no off-diagonal correlaticﬁ pf‘j:pibj: 6;; yields the stan-
dard quantum limit A¢=1/y2N [see Fig. 3(a) at V/J>1].
The final SF W) with long-range correlations pii= pg:l
asymptotically recovers the Heisenberg limit Ad¢
=1/YN?/2+N [see Fig. 3(a) at V/J=0]. Thus the scaling
A¢pxN~* changes from a=1/2 to a=1 during the melting.

The presence of a residual intraspecies interaction V re-
sults in quantum depletion of the populations in the A, and
By modes, which reduces the attainable sensitivity. We con-
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FIG. 3. (Color online) (a) Scaling a in A¢p~ N~* against V/J of
ground states of H with U=0. The scaling was obtained from cal-
culations with N=20 up to 60 with M=N/2 for both the 1D nu-
merical results (O) in a box system and the N-conserving Bogoliu-
bov results (solid line). (b) Sensitivity A¢ as a function of V/J for
N=60. The dotted lines show exact results for the twin Fock SF
(bottom) and the MI (top) states, while the thick solid line shows
the Bogoliubov result. (¢) A¢ as a function of N for V/J=20 (MI)
and V/J=1/2 (SF) giving « of the corresponding points in (a). In
all cases the dashed lines are to guide the eye.

sider this effect for U=0, achieved for example by fully
separating the sites of a spin-dependent lattice. In the SF
regime J>V a translationally invariant system is well de-
scribed by the N-conserving Bogoliubov wave function

[Wog) ~ (A)VH(A,)M?|vac), 3)

where A —(A Zq;&ochqA ) with A the q qua51momen—

tum modes for a, and similarly Ab is deﬁned in terms of B
for component b. Within this ansatz the depletion is 1dentlcal
for both components and is given by ¢ =Eq#0nq
=cZ/ (1- Cz) where n =<A*Aq>—<é*éq> and the amplitudes
cq<1 can be solved in terms of V/J and are given in [18].
The sensitivity is then A@(0)=1/[N*(1-0)*/2+N
+22q¢0n2]“2 For a three-dimensional (3D) optical lattice
the depletion (= (V/J)3/2/3712\2 and the sum Eqionz

=(V/J)32(37—8)/12\2 are constant in N. Within the region
of validity of the Bogoliubov ansatz there will thus be no
degradation of the sensitivity scaling «. Similarly we find no
decrease of « in 2D within the Bogoliubov ansatz. In con-
trast, for a 1D system the depletion increases with N since
there is no true condensate for nonzero V and long-range
correlations decay algebraically. Consequently the scaling «
decreases with increasing V/J as shown in Fig. 3(a) for a
finite number of particles.

We explore the sensitivity scaling between the SF and MI
limit in 1D numerically using the time-evolving block deci-
mation algorithm [19]. For specific values of N we compute
the ground states of the Hamiltonian Eq. (1) over a range of
V/J and U=0 and calculate their sensitivities. The result for
N=60 in Fig. 3(b) shows a smooth transition between the
ideal SF and MI results and agrees with the Bogoliubov re-
sult for V/J<2. By repeating this calculation for different N
we extract the sensitivity scaling «. For all values of V/J the
numerical results are well approximated by a power law
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FIG. 4. (Color online) (a) Energy difference per atom

(E-Ey)/NJ between |W(z,)) and the final SF ground state | W) (left
axis, dashed lines) and overlap [(W(z,) | W)| (right axis, solid line)
as a function of the ramping time ¢,. Starting from the MI ground
state at V/J=20 we ramped V(¢) down to a final V, /J=1/2 using
different ramping times ¢, and U=0, N=50, and M =25. (b) Scaling
a of 8¢ with N for [ W) under the presence of atom loss at a rate «
obtained from results for N=20 up to 60. Note that & does not reach
unity because of the finite N used.

A¢p~N* as shown for the extreme cases in Fig. 3(c). We
combine these results in Fig. 3(a) which displays the scaling
a as a function of V/J. The value of a decreases smoothly
from the Heisenberg limit in the SF regime to the standard
quantum limit in the MI regime. As also shown in Fig. 3(a)
the 1D Bogoliubov ansatz Eq. (3) is consistent with the nu-
merics for V/J=<2 and the values of N used here. In the MI
regime a number-conserving particle-hole ansatz [20] under-
estimates long-range correlations and therefore does not pre-
dict an increase of « from 1/2 at finite V/J. This emphasizes
the importance of the growth of long-range correlations for
increasing a above the standard quantum limit. While our
numerical calculations are performed for sizes of 1D optical
lattices currently used in experiments [2] we expect the scal-
ing a to drop from a=1 to 1/2 at vanishingly small V/J
when N — @ because of the lack of true long-range correla-
tions. In 2D and 3D this reduction is instead expected to
occur at finite V/J close to the phase transition point (V/J)
below which long-range correlations exist at large N.

In experiments the ramping time ¢, will be finite and so
the melting is never perfectly adiabatic. We numerically
compute the dynamical ramping of V/J for the Hamiltonian
Eq. (1) with U=0 from the MI ground state. In Fig. 4(a) the
energy difference per atom between the final ramped state
|W(t,)) and the SF ground state |¥,) is shown as a function
of the ramping time ¢,, along with the corresponding many-
body overlap [(¥(z,)|Wy)|. For the infinite Bose-Hubbard
model it has been shown [8] that 7,>V,,./J? guarantees
adiabatic evolution. Our numerics of a finite-sized system
agree with this result, giving a near-unit overlap and small
energy differences for ramping times of ¢,~3V,/J?> with V,
the initial interaction strength in the MI.

Given that the ramping time 7, is much longer than the
time required to implement the MZI in Fig. 1(b) we consider
the influence of atom loss over a time #,. The buildup of
long-range correlations during the melting process has been
found to be robust to atom loss processes [2]. However, atom
loss will cause uncertainty in the relative number of a and b
atoms in the final state |¥;). We use the model introduced in
[11] to calculate the sensitivity scaling « assuming that the
state | W) is subject to atom loss at a rate « for time ,. As
shown in Fig. 4(b) we find that a=1 for «#,<<0.1. In com-
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bination with the adiabaticity condition on 7, Heisenberg-
limited sensitivities can thus be achieved for x<J?/30V,.
This condition is within the reach of current optical lattice
technology where tunneling amplitudes J of a few hundred
hertz and loss rates on the order of hertz can be achieved [2].
Furthermore, additional fluctuations in the overall particle
number N which occur from shot to shot do not affect the
scaling « [17]. In the experiment a harmonic trapping poten-
tial is likely to be present and causes an outer shell of singly
occupied lattice sites with atoms in the auxiliary state c. Ad-
ditionally, an imperfect Raman transition during the creation
of the initial MI state may leave a c-atom pair within the
|W,,) state. In both cases the presence of a small number of
c-atom impurities will not destroy the coherence of the final
SF state, as seen in recent experiments [21]. Also these at-
oms will remain in state ¢ throughout the whole process and
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thus will not contribute to the particle number fluctuations
[6].

In summary we have shown that quantum melting of a
two-component MI in an optical lattice provides a viable
route to engineer twin Fock states on time scales ¢, smaller
than current experimental atom loss times. In particular the
creation time ¢, does not scale with N. Our scheme also ex-
ploits the accurate controllability of two atom in a single
lattice site to minimize fluctuations in the relative numbers of
a and b atoms, which is crucial for achieving Heisenberg-
limited sensitivities proportional to 1/N.
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