Research

Experimental Investigation for the Development and Validation of Atomistic Models in Construction


Reference:

Pesce, G., Ball, R., Grant, R., Yeandel, S., Parker, S. and Molinari, M., 2015. Experimental Investigation for the Development and Validation of Atomistic Models in Construction. In: 16th International Conference on Non-conventional Materials and Technologies (NOCMAT 2015), 2015-08-10 - 2015-08-13.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Abstract

Recent advances in computing power allow for increasingly accurate atomistic modelling in the study of complex chemical processes in a variety of applications. Atomistic modelling has the potential to elucidate the nature of minerals and mechanisms of reactions occurring in the manufacture and use of construction materials such as the decomposition of carbonates. The research described in this paper explores the application of atomistic modelling applied to the materials used in the construction industry by investigating the decomposition process of dolomite. The paper, in particular, describes the results of experimental investigations that are subsequently used to validate computational models. Studies undertaken using thermal gravimetric analysis, X-ray diffraction and Raman spectroscopy suggest that under specific conditions, dolomite (MgCa(CO3)2) decomposes through the formation of periclase (MgO) and calcite phases (CaCO3; first step) with the latter in turn decomposing to lime (CaO; second step) and carbon dioxide (CO2). Our modelling is in agreement with results from previous authors who describe the decomposition of dolomite through the formation of phase separated calcium and magnesium minerals. Consequently, computational efforts focus on pure phases of minerals and their reactions rather than complex mixed-phase models of dolomitic lime.

Details

Item Type Conference or Workshop Items (Paper)
CreatorsPesce, G., Ball, R., Grant, R., Yeandel, S., Parker, S. and Molinari, M.
DepartmentsFaculty of Engineering & Design > Architecture & Civil Engineering
Faculty of Science > Chemistry
Research CentresBRE Centre in Innovative Construction Materials
Materials Research Centre
Centre for Sustainable Chemical Technologies
EPSRC Centre for Doctoral Training in Statistical Mathematics (SAMBa)
RefereedNo
StatusPublished
ID Code47631

Export

Actions (login required)

View Item