Research

How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells?


Reference:

Cameron, P. J., Peter, L. M. and Hore, S., 2005. How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells? Journal of Physical Chemistry B, 109 (2), pp. 930-936.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.

Abstract

The role of the conducting glass substrate (fluorine-doped tin oxide, FTO) in the back reaction of electrons with tri-iodide ions in dye-sensitized nanocrystalline solar cells (DSCs) has been investigated using thin-layer electrochemical cells that are analogues of the DSCs. The rate of back reaction is dependent on the type of FTO and the thermal treatment. The results show that this back-reaction route cannot be neglected in DSCs, particularly at lower light intensities, where it is the dominant route for the back transfer of electrons to tri-iodide. This conclusion is confirmed by measurements of the intensity dependence of the photovoltages of DSCs with and without blocking layers. It follows that blocking layers should be used to prevent the back reaction in mechanistic studies in which the light intensity is varied over a wide range. Conclusions based on studies of the intensity dependence of the parameters of DSCs such as photovoltage and electron lifetime in cells without blocking layers, must be critically re-examined.

Details

Item Type Articles
CreatorsCameron, P. J., Peter, L. M. and Hore, S.
DOI10.1021/jp0405759
DepartmentsFaculty of Science > Chemistry
RefereedYes
StatusPublished
ID Code4832
Additional InformationID number: ISI:000226313200039

Export

Actions (login required)

View Item