Research

From insect to man:Photorhabdus sheds light on the emergence of human pathogenicity


Reference:

Mulley, G., Beeton, M. L., Wilkinson, P., Vlisidou, I., Ockendon-Powell, N., Hapeshi, A., Tobias, N. J., Nollmann, F. I., Bode, H. B., Van Den Elsen, J., Ffrench-Constant, R. H. and Waterfield, N. R., 2015. From insect to man:Photorhabdus sheds light on the emergence of human pathogenicity. PLoS ONE, 10 (12), e0144937.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below. (Contact Author)

Official URL:

http://dx.doi.org/10.1371/journal.pone.0144937

Related URLs:

Abstract

Photorhabdus are highly effective insect pathogenic bacteria that exist in a mutualistic relationship with Heterorhabditid nematodes. Unlike other members of the genus, Photorhabdus asymbiotica can also infect humans. Most Photorhabdus cannot replicate above 34°C, limiting their host-range to poikilothermic invertebrates. In contrast, P. asymbiotica must necessarily be able to replicate at 37°C or above. Many well-studied mammalian pathogens use the elevated temperature of their host as a signal to regulate the necessary changes in gene expression required for infection. Here we use RNA-seq, proteomics and phenotype microarrays to examine temperature dependent differences in transcription, translation and phenotype of P. asymbiotica at 28°C versus 37°C, relevant to the insect or human hosts respectively. Our findings reveal relatively few temperature dependant differences in gene expression. There is however a striking difference in metabolism at 37°C, with a significant reduction in the range of carbon and nitrogen sources that otherwise support respiration at 28°C.We propose that the key adaptation that enables P. asymbiotica to infect humans is to aggressively acquire amino acids, peptides and other nutrients from the human host, employing a so called nutritional virulencea strategy. This would simultaneously cripple the host immune response while providing nutrients sufficient for reproduction. This might explain the severity of ulcerated lesions observed in clinical cases of Photorhabdosis. Furthermore, while P. asymbiotica can invade mammalian cells they must also resist immediate killing by humoral immunity components in serum. We observed an increase in the production of the insect Phenol-oxidase inhibitor Rhabduscin normally deployed to inhibit the melanisation immune cascade. Crucially we demonstrated this molecule also facilitates protection against killing by the alternative human complement pathway.

Details

Item Type Articles
CreatorsMulley, G., Beeton, M. L., Wilkinson, P., Vlisidou, I., Ockendon-Powell, N., Hapeshi, A., Tobias, N. J., Nollmann, F. I., Bode, H. B., Van Den Elsen, J., Ffrench-Constant, R. H. and Waterfield, N. R.
DOI10.1371/journal.pone.0144937
Related URLs
URLURL Type
http://www.scopus.com/inward/record.url?scp=84956635399&partnerID=8YFLogxKUNSPECIFIED
http://dx.doi.org/10.1371/journal.pone.0144937Free Full-text
Uncontrolled Keywordsagricultural and biological sciences(all),biochemistry, genetics and molecular biology(all),medicine(all)
DepartmentsFaculty of Science > Biology & Biochemistry
RefereedYes
StatusPublished
ID Code49304

Export

Actions (login required)

View Item