Research

Shallow flow simulation on dynamically adaptive cut-cell quadtree grids


Reference:

Liang, Q., Zang, J., Borthwick, A. and Taylor, P. H., 2007. Shallow flow simulation on dynamically adaptive cut-cell quadtree grids. International Journal for Numerical Methods in Fluids, 53 (12), pp. 1777-1799.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.

Official URL:

http://dx.doi.org/10.1002/fld.1363

Abstract

A computationally efficient, high-resolution numerical model of shallow flow hydrodynamics is described, based on dynamically adaptive quadtree grids. The numerical model solves the two-dimensional non-linear shallow water equations by means of an explicit second-order MUSCL-Hancock Godunov-type finite volume scheme. Interface fluxes are evaluated using an HLLC approximate Riemann solver. Cartesian cut cells are used to improve the fit to curved boundaries. A ghost-cell immersed boundary method is used to update flow information in the smallest cut cells and overcome the time step restriction that would otherwise apply. The numerical model is validated through simulations of reflection of a surge wave at a wall, a low Froude number potential flow past a circular cylinder, and the shock-like interaction between a bore and a circular cylinder. The computational efficiency is shown to be greatly improved compared with solutions on a uniform structured grid implemented with cut cells

Details

Item Type Articles
CreatorsLiang, Q., Zang, J., Borthwick, A. and Taylor, P. H.
DOI10.1002/fld.1363
Uncontrolled Keywordsquadtree, non-linear shallow water equations, godunov method, approximate riemann solver, cut cell
DepartmentsFaculty of Engineering & Design > Architecture & Civil Engineering
RefereedYes
StatusPublished
ID Code500

Export

Actions (login required)

View Item