A stability/instability trichotomy for non-negative Lur’e systems
Reference:
Bill, A., Guiver, C., Logemann, H. and Townley, S., 2014. A stability/instability trichotomy for non-negative Lur’e systems.
Related documents:
![]()
| PDF (mtns_2014_bill_et_al_stability_lure) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (116kB) | Preview |
Official URL:
http://fwn06.housing.rug.nl/mtns2014-papers/extendedAbstracts/0247.pdf
Related URLs:
Abstract
We identify a stability/instability trichotomy for a class of non-negative continuous-time Lur’e systems. Asymptotic as well as input-to-state stability concepts (ISS) are considered. The presented trichotomy rests on Perron-Frobenius theory, absolute stability theory and recent ISS results for Lur’e systems.
Details
Item Type | Conference or Workshop Items (UNSPECIFIED) | ||||
Creators | Bill, A., Guiver, C., Logemann, H. and Townley, S. | ||||
Related URLs |
| ||||
Departments | Faculty of Science > Mathematical Sciences | ||||
Research Centres | Centre for Mathematical Biology EPSRC Centre for Doctoral Training in Statistical Mathematics (SAMBa) | ||||
Status | Published | ||||
ID Code | 50933 |
Export
Actions (login required)
View Item |