1. Introduction

The advancement of cost effective, naturally abundant, environmentally benign, and highly active catalysts for energy conversion and storage is of utmost importance and is an important topic in renewable energy research. In particular, water splitting, fuel cells and metal-air batteries are required for future energy conversion and storage applications as a result of their high theoretical energy density. The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play major roles in these devices. In this context, the discovery of robust materials for both the OER and ORR is important but also very challenging. Traditional catalysts, such as Pt and its alloys, perform well for the ORR, but their high cost limits their applications. Materials such as, iridium and ruthenium-based compounds and their oxides are well known OER catalysts. These metals are also expensive and among the rarest elements on earth, making them impractical for large-scale applications. Therefore, alternative catalysts based on cost effective, metal-free materials or non-precious metals have attracted considerable attention. As a result, a number of non-precious nanomaterials, such as NiO2,CoO2, CeO2, O2–, NiO2-Bi16 and Ni3S2,11 have been explored for their high OER activity. Recently, a range of uni-functional carbon materials or metal oxides with carbon materials also have been reported to exhibit high activities either for the OER or for ORR activity.12-23 However, the use of single catalyst as a bi-functional catalyst has rarely been reported because the bi-functionality requires significantly low over potentials and high activities for both the OER and ORR. Therefore, it remains a considerable challenge to design a high-performance catalyst capable of unifying the both OER and ORR for energy conversion and storage applications with the relevant properties of high activity, low-cost, carbon monoxide (CO) tolerance, and excellent stability.

Recently, a wide range of molybdenum oxide-based compounds with the manifold structural motifs and properties have attracted considerable interest in the field of materials research. These materials have been shown to exhibit excellent properties for catalysis, photocatalysis, batteries, solar energy conversion, and sensors. In crystallographic view, MoO3 exists in three phases, orthorhombic α-MoO3, monoclinic β-MoO3, and hexagonal H-MoO3. The hexagonal H-MoO3 system is a metastable phase, which is constructed from the zigzag chains of octahedral [MoO6] as the building blocks attached through adjacent oxygen. Compared to α and β crystal structures, hexagonal MoO3 retains a number of interesting properties. The tunnel structure of H-MoO3 can result in electron-hole separation and afford large special locations for cation insertion and extraction. To date, there are no reports of multifunctional catalysts based on a hexagonal molybdenum oxide embedded graphene material for OER and ORR activity. Importantly the three essential factors to achieve in commercializing fuel technologies include high efficiency, stability, and scalability. In this regard, the present study focused on a catalyst that is not only highly active but is also facile, robust, highly stable, and easily scalable. This paper reports the first, highly active

Sundaram Chandrasekaran, Eui Jung Kim, Jin Suk Chung, Chris R Bowen, Balasubramaniyan Rajagopalan, Vaia Adamaki, R.D.K. Misra, and Seung Hyun Hur*

The advances in cost effective, highly active and stable electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) remain the major issues for the commercialization of metal air-batteries and alkaline fuel cells. In this aspect, a facile hydrothermal route was developed to prepare nonprecious metal electrocatalysts including pristine MoO3 rods, nanospheres, and their hybrids with reduced graphene oxide (rGO). This is the first report of the use of rGO coupled with hexagonal MoO3 nanocrystals to act as both ORR and OER catalysts. The rGO - MoO3 sphere hybrid catalyst exhibited excellent catalytic activity toward both the ORR and OER than pristine MoO3 rods, MoO3 spheres and rGO-MoO3 rods. In addition, the rGO - MoO3 nanosphere hybrid exhibited excellent catalytic activity, long-term durability, and CO tolerance compared to a high quality commercial Pt/C catalyst. This makes the GMS hybrid composite a highly promising candidate for high-performance non-precious metal-based bi-functional electrocatalysts with low cost and high efficiency for electrochemical energy conversion. The enhanced activity of the rGO - MoO3 nanosphere hybrid is due mainly to the enhanced structural openness in the tunnel structure of the hexagonal MoO3 when it is coupled with rGO.
and multifunctional reduced graphene oxide (rGO) - hexagonal MoO₃ hybrid catalysts synthesized via a facile hydrothermal route. For sample identification, the prepared MoO₃ rods, MoO₃ nanospheres, rGO-MoO₃ rods, and rGO-MoO₃ nanosphere samples are denoted as MR, MS, GMR, and GMS respectively. The synthesized materials were tested for both the ORR and OER reactions and GMS hybrid shows promising performance compared to a high quality commercial Pt/C catalyst, indicating its potential as a cost effective and highly active bi-functional catalyst.

Experimental Section

2.1 Catalysts Synthesis

In a typical procedure of MR, 3 mmol of ammonium heptamolybdate tetrahydrate [(NH₄)₆Mo₇O₂₄·4H₂O] was dissolved in 50 mL of distilled water and 3 mmol HCl was then added to the reaction solution with vigorous stirring. The resulting solution was transferred to a 100 mL Teflon-lined stainless autoclave and sealed tightly, which was kept at 180 °C for 14 h. The autoclave was then allowed to cool naturally to room temperature. The resulting products were filtered, washed several times with absolute ethanol and distilled water, and dried at 250 °C for 4 h. The MS sample was synthesized using the same procedure, only the HCl was replaced with ammonia.

The graphene oxide (GO) was synthesized from graphite powders using a modified Hummers’ method. In a typical synthesis of the GMR or GMS, 20 mg of MR or MS was added gradually to 20 mL of the GO solution. The mixture solution was then stirred magnetically, and 5 mL of ammonia was added gradually to the mixture. After 2 h, the resulting stable suspension was then transferred to a Teflon-lined autoclave, and treated hydrothermally at 180 °C for 14 h. Finally, the as-prepared product was dried at 250 °C for 4 h.

2.2 Instrumental analysis

The crystalline phases were identified by X-ray diffraction (XRD; Rigaku) using Cu-Kα radiation. The surface morphologies were identified by field emission scanning electron microscopy (FE-SEM; JSM 6500F) and transmission electron microscopy (TEM; JEOL JEM 2100F). The vibrational, rotational and other low-frequency modes in the sample were analyzed by Raman spectroscopy (Thermo Scientific DXR). The material composition and oxidation states of carbon and iron atoms in the GMS nanocomposites were analyzed by X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-alpha). N₂ adsorption--desorption measurements were carried out at 77 K using a Micromeritics ASAP 2020 gas sorption system. Thermogravimetric analysis (TGA) was carried out on Q50 (TA instruments) thermo-analyser under air atmosphere at a heating rate of 10 °C min⁻¹. The samples were heated from room temperature to 800 °C at a linear heating rate.

2.3 Electrochemical measurements

The electrochemical measurements were carried out in 0.1 M KOH at room temperature by cyclic voltammetry (CV, BioLogic, SP-50, USA) with a rotating disk electrode (RDE, 3 mm in diameter, RRDE-3A, ALS Co., Japan). The three-electrode cell consisted of an Ag/AgCl electrode as the reference electrode, Pt as the counter-electrode, and a glassy carbon electrode/rotating disk electrode (RDE) loaded with the various catalysts as the working electrode. As the working electrode, the electroactive materials in ethanol (1 mg/ml) and 10 μL of Nafion solution (0.5 wt% in isopropanol) as a binder were mixed by sonication. Subsequently, all the catalyst loading in the same amount of ~ 0.10 mg cm⁻² was coated on a glassy-carbon RDE and dried in air for the electrochemical characterization. Finally, the measured potential vs. Ag/AgCl was converted to the reversible hydrogen electrode (RHE) scale using the Nernst equation.

3. Results and Discussion

The size, morphology, and hybrid structure of all samples were examined by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM). Fig. 1 shows the microscopic images of pristine MoO₃ rods (MR), rGO - MoO₃ rods (GMR), and pristine MoO₃ spheres (MS). Fig. S1 represents FE-SEM images of pristine rGO used in the preparation of GMR and GMS hybrids. From the microscopic images (Fig. 1(a-d)) of prepared MR sample, it evidently shows a unique rod-like morphology. The length of rods is about 8-12 μm and the average width is ~ 400-500 nm as shown in Fig. 1(a-d). The fact demonstrated that, an addition of HCl in the reaction process was crucial for pure hexagonal-MoO₃ formation. During the synthesis, acidic additives (HCl) turned out to be most effective in terms of rod formation and morphology control. The H⁺ concentration influences a rapid precipitation and resulted the formation of H-MoO₃. In other words, the H⁺ is crucial to the formation of H-MoO₃ rod like structures. Fig. 1(e-h) shows the microscopic images of rGO-MoO₃ (GMR) rod structures, where the average width of 100-125 nm of MoO₃ rods were hybrid with the rGO. Besides, it is to note that the nano spheres of MoO₃ (for MS sample) with the average diameter of ~10-20 nm were obtained with addition of ammonia in the reactant solvent medium during synthesis as shown in Fig. 1(i-j). Generally, the organic additives during the synthesis play a crucial role both in inducing the MoO₃ nuclei and directing the crystal growth. The effect of ammonium ions on the nucleation and growth is critical in controlling the morphology of the MoO₃ nanostructures, moreover the crystallization of the hexagonal phase with sphere shape takes place through the self-assembly of MoO₃ with the assistance of NH₄⁺ and H₂O. Finally, the purity and crystallinity of samples is improved by temperature effect. The rGO - MoO₃ nanospheres (GMS) have a diameter of ~ 10-20 nm and consist of numerous smaller spheres, forming a porous structure, as shown in Fig. 2, where large amounts of MoO₃ nanoparticles are decorated on rGO. The GMS, Pt/C, GMR, MR, and MS catalysts showed Brunauer-Emmett-Teller (BET) surface areas of 158.185, 133.415, 28.788, 6.817, and 6.415 m² g⁻¹, respectively, as shown in Fig. 2f and Fig. S2.
The XRD patterns (Fig. 3a) show the good crystalline nature of all the prepared samples, as evidenced by the sharp XRD peaks, which can be indexed to the hexagonal MoO$_3$ phase JCPDS card (21-0569). In addition, the MR and GMR samples contained mixed phases of hexagonal MoO$_3$ and triclinic Mo$_{13}$O$_{33}$, which is in good agreement with the JCPDS card (21-0569 for H-MoO$_3$ and 82-1930 for Mo$_{13}$O$_{33}$). XRD indicated that for the GMR and GMS hybrids, the MoO$_3$ particles are purely formed on the graphene surface without the mixing of impurity particles. In the GMR and GMS hybrid structure, the presence of MoO$_3$ micro rods and nanoparticles reduces the aggregation of graphene sheets, which results in less stacking of the rGO sheets. As a result, a weak graphene related peak was observed in the XRD patterns.
Fig. 2 FE-SEM images (a,b,c); (d,e) are TEM images and (f) represents the BET analysis of the GMS hybrid.

Fig. 3 (a) XRD patterns, (b) Raman spectra of MR, GMR, MS, and GMS hybrid (inserted graph represents the rGO peaks for the GMS and GMR samples); (c), (d) and (e) are XPS Mo3d, O1s and C1s core-level spectra of the GMS hybrid.

Fig. 3b shows the Raman spectra of the prepared pristine and graphene-MoO3 nanocomposites of MR, MS, GMR and GMS. The intensity of the Raman peaks varies according to the crystal orientation and polarization of the laser source. The irreducible representation of MoO3 with the space group D_{2h}^{16} (Pbnm) is known as follows: \Gamma = 8A_{g} + 8B_{1g} + 4B_{2g} + 4B_{3g} + 4A_{u} + 7B_{1u} + 7B_{2u} + 7B_{3u}, where A_{g}, B_{1g}, B_{2g} and B_{3g} are the Raman-active modes.\(^{50,52}\) A narrow band at \(~993\) cm\(^{-1}\) is the result of antisymmetric vMo=O\(_{1}\) stretching (A\(_{g}\)), in which the bonding aligns along the b axis direction. Furthermore, the Raman peak at \(~818\) cm\(^{-1}\), which is due to the stretching vibrations from the doubly coordinated bridging oxygen in the symmetric vMo-O\(_{3}\)-Mo stretching (A\(_{g}\)) with the bonding along the a-axis, is the most intense Raman peak. The peak at 659 cm\(^{-1}\) and a weak peak at 466 cm\(^{-1}\) are fallouts of the asymmetric vMo-O\(_{2}\)-Mo stretching (B\(_{2g}\)) and bending (A\(_{u}\)) modes, respectively.\(^{53}\) The Raman peaks at 377 cm\(^{-1}\) were assigned to the B\(_{1g}\) mode due to the \(\delta O_2=Mo=O_2\) scissor, and the 334 cm\(^{-1}\) peak is the characteristic of \(\delta O_4=M=O_2\) deformation (B\(_{4g}\) mode). The broad band at 281 cm\(^{-1}\) corresponds to the wagging vibrations (\(\delta O_4=Mo=O_1\) of B\(_{2g}\) mode). The peaks at \(~244, 217, 194\) cm\(^{-1}\) can be attributed to the B\(_{1g}\), A\(_{g}\), and B\(_{2g}\) modes, respectively, due to the \(\delta O_2=Mo=O_2\) scissor. The peaks at \(~144, 120, and 111\) cm\(^{-1}\) are the results from the deformation of MoO\(_{3}\). In addition, the peaks at \(~1610\) cm\(^{-1}\) and 1314 cm\(^{-1}\) correspond to the G and D bands of the graphene sheets for the GMR and GMS hybrids, respectively (inserted graph in Fig. 3b); the characteristic peaks of the MoO\(_{3}\) particles and graphene appeared together in the GMR and GMS samples, suggesting the formation of the composites.

In addition, the electronic state and chemical composition of the GMS sample were examined by XPS. The XPS full scan survey spectra revealed the presence of Mo, C, and O in the rGO-MoO\(_{3}\) nanocomposite, as shown in Fig. S3a. The Fig. 3c-e focuses on the XPS core level signatures at the rGO-MoO\(_{3}\) interface, with the evolution of the Mo3d, O1s, and C1s core levels. The GMS hybrid sample features two main peaks at 232.18 eV and 235.28 eV, which are related to the Mo 3d\(_{3/2}\) and 3d\(_{5/2}\) components (Fig. 3c) with an integrated peak area ratio of 3:2 and a binding energy (AMo 3d = 3.1 eV), corresponding to an oxidation state of Mo(VI) for MoO\(_{3}\) and...
are indicative of a predominant Mo6+ oxidation state40. The O1s core-level spectrum of the GMS sample show two peaks at 530.14 eV and 532.11 eV corresponding to Mo-O and Mo-O-C bond formations, respectively, as shown in Fig. 3d. The C1s XPS spectra could be deconvoluted into three Gaussian peaks centered at 284.08, 285.57, and 287.98 eV, which were assigned to C-C/C=C, C-O, C=O, and O=C-O groups, respectively (Fig. 3e). The XPS data strongly support the XRD and Raman results and confirm the presence of MoO\textsubscript{3} on the surface of rGO in the GMS nanocomposite.

The chemical purity and thermal stability of MR, MS, GMR and GMS samples were evaluated by TGA under air atmosphere as shown in Fig. S4. When the samples heated from ambient temperature to 800° C, a prolonged decomposition starts at 200° C and extends up to 720° C leading to a total weight loss of 8.37, 9.27, 18.74 and 19.99 % for MR, MS, GMR and GMS samples respectively. Which indicates the highly stable nature of the prepared samples. These TGA results are in good agreement with previously reported results55-59. As shown in Fig. S4, MR and MS samples show a similar thermal decomposition trend under air conditions with a the nearly same weight loss of ~ 7 wt% up to 100-350° C, which was attributed to the removal of oxygen containing functional groups. Usually, the weight losses in the temperature range of 150° C - 300° C and 300° C - 600° C correspond to the removal of water and organic moiety respectively51, 60. For GMR and GMS nanocomposites, an obvious mass loss appeared between 230 and 600 °C, owing to the complete oxidation of graphene to carbon dioxide in air atmosphere. Then the curves showed thermal stability plateaus from 600, until 720 °C followed by an obvious mass loss due to melting and then evaporation of MoO\textsubscript{3} beyond 720 °C.

To assess the electrochemical oxygen reduction reaction (ORR) activity, the synthesized MR, MS, GMR, GMS catalysts and a high quality commercial Pt/C (Hispec™ 4000, Johnson Matthey, 53 wt% Pt) catalysts with the same loading were initially loaded onto glassy carbon electrodes to examine the cyclic voltammetry (CV) behavior in a 0.1 M KOH electrolyte saturated with either nitrogen (N\textsubscript{2}) or oxygen (O\textsubscript{2}) at a potential scan rate of 10 mV s-1 using a three-electrode system until reproducible CVs were obtained. Compared to the featureless CV profile in the N\textsubscript{2}-saturated electrolyte (dotted red line in Fig. 4a), a strong reduction current peak was observed when the electrolyte was saturated with O\textsubscript{2} (solid black line in Fig. 4a), indicating the electrocatalytic activity of the as-synthesized samples toward oxygen cathodic reduction. The rotating disk electrode (RDE) technique was carried out to further investigate the electrocatalytic ORR behavior of all the synthesized catalysts and high purity commercial Pt/C samples.

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 5
The polarization curves were obtained by scanning the potentials at a scan rate of 10 mV s\(^{-1}\) at different rotation rates, as shown in Fig. S5 for MR, MS, and GMS catalysts, and in Fig. 4b for GMR catalyst. The linearity of the Koutecky-Levich plots and the near parallelism of the fitting lines (Fig. S5 and inset of Fig. 4c) suggest first-order reaction kinetics toward the concentration of dissolved oxygen and similar electron transfer numbers for the ORR at different potentials.

Fig. 4d compares the polarization curves of MR, GMR, MS, GMS, and high quality Pt/C catalyst in an O\(_2\)-saturated 0.1 M KOH at room temperature with rotation at 1600 rpm. Remarkably, the ORR onset potential was 0.819 V vs. RHE for the GMS hybrid, and more positive than that of MR (0.738), MS (0.762 V), and GMR (0.767 V) catalyst as shown in Fig. S5a. Significantly, the MR, GMR, MS, and GMS catalysts, exhibited ORR activity with an electron transfer number of 3.1, 2.91, 3.2, and 3.3 at 0.2 V vs. RHE, respectively as shown in Fig. S4 and Fig. 4c, suggesting a dominant reduction process. Compared to the prepared samples, the GMS hybrid structure showed enhanced ORR activity (Fig. 4d) because the addition of graphene, small sized particles, morphology, and exposed active faces have significant impacts on the catalytic activity in the GMS hybrid. In addition, the enhanced activity of the GMS hybrid is due to the higher structure openness in the tunnel structure of hexagonal MoO\(_3\), which was not only coupled with graphene, but also provide an effective highway for the transportation of charges for an active catalytic activity.\(^\text{41}\) This could provide more active sites in the GMS hybrid. Similarly, graphene prevents the agglomeration of MoO\(_3\) nanospheres, which can also enhance the electrochemical performance. Moreover, the GMR and GMS hybrids afforded an ORR current density of 1.26 mA cm\(^{-2}\) and 2.27 mA cm\(^{-2}\), respectively (Fig. 4d). The performance of the GMS hybrid catalyst was enhanced greatly compared to other catalysts. In addition, the diffusion-limiting current of the GMS nanocomposite was close to that of a commercial Pt/C catalyst (onset potential ~ 0.915 V) and the half-wave potential was ~ 114 mV lower than that of Pt/C.

On the other hand, the GMS hybrid catalyst has a higher current density (2.27 mA cm\(^{-2}\)) that that obtained using the commercial Pt/C catalyst (1.98 mA cm\(^{-2}\)) see Fig. 4d, which can be due to the higher electron accepting capability of the ORR active sites and the large surface area of the GMS hybrid. The excellent ORR activity of the GMS hybrid catalyst was also observed from the much smaller Tafel slope of 56 mV/decade at low over-potentials (Fig. 4e) than those measured with MR (110 mV/decade), GMR (76 mV/decade), MS (89 mV/decade), and high quality commercial Pt/C (61 mV/decade) in the O\(_2\) saturated 0.1 M KOH electrolyte.

During durability testing (Fig. 5a), the GMS hybrid exhibited superior long term durability compared to the Pt/C catalyst in O\(_2\) saturated 0.1 M KOH with less decay (\(\nabla 15\% - 29\%\)) of the ORR activity than that of the Pt/C catalyst (\(\nabla 35\% - 48\%\)) over 10,000 - 20,000 s of continuous operation with a rotation of 1600 rpm at 0.65 V vs. RHE (Fig. 5a). Although the GMR showed slightly higher activity, it suffered a 39% decrease in current density over 20,000 s of continuous operation in O\(_2\) saturated 0.1 M KOH. In particular, in alkaline electrolytes (for alkaline fuel cells), the Pt catalyst degrades gradually over time due to surface oxides, aggregation, and particle dissolution. Long term durability is one of the most important properties for potential ORR active catalysts as electrocatalysts since they must operate for a long time in a harsh environment.\(^\text{41}\) In this regard, the durability of GMR, GMS, and high quality commercial Pt/C was tested again using a glassy carbon electrode by continuously performing the ORR at 0.65 V vs. RHE in an O\(_2\) saturated 0.1 M KOH solution. The results were compared with those obtained for commercial Pt/C catalyst under the same environment, as shown in Fig. 6b. These results suggest that the GMS hybrid structure has a larger long term durability than GMR and high quality commercial Pt/C catalysts.

In previous reports, the long-term stability of other ORR catalysts, such as Ag, Au, Pd, and bi-metallic nanocrystals, in alkaline solutions are improved relative to Pt, but they still suffer from deactivation and are below the targets for energy storage device applications.\(^\text{42, 61}\) Poor catalyst durability is one of the major challenges for alkaline fuel cells. Hence, the excellent stability of this GMS hybrid makes it favorable for the ORR and further important catalytic kinetic reactions in alkaline solutions.

Typically, carbon monoxide (CO) molecules are one of the main poisons of fuel cell catalysts because of their strong coordination to active metal surfaces, which reduces the rate of the catalytic reaction. Importantly, the present hybrid exhibits superior CO tolerance to Pt/C catalyst due to the injection of a 3.0 M methanol solution in the middle of the RDE at a rotation of 1600 rpm. As shown in Fig. 5c, a rapid decrease in the normalized current was observed for the Pt/C catalyst immediately after the methanol injection. In contrast, there was almost no change in the GMS and GMR catalyst, which indicates the excellent CO tolerance of the graphene-MoO\(_3\) hybrids fabricated in this study. The more positive ORR onset potential, the more positive half-wave potential, and the smaller Tafel slope measured by CV, RDE, long term durability, and CO tolerance indicates the excellent electrocatalytic performance of the GMS hybrid structures fabricated in this study. The enhanced ORR activity of the GMS hybrid may result from the small particle size, high surface area, higher structure openness in the tunnel structure of hexagonal MoO\(_3\), and the thermal reduction of GO during the synthesis process. This is a result of the higher electrical conductivity of the rGO, the high surface area, and the more active sites provided by the GMS hybrid structure.
which can lead to better ORR activity of the resulting nanocomposites due to the effective charge transfer from MoO$_3$ to rGO.25,30,62

To examine the OER electrocatalytic activity, CV and linear sweep voltammetry (LSV) were performed with the same catalysts loaded on the glassy carbon electrodes and a rotating disk electrode in an N$_2$-saturated 0.1 M KOH. For a direct comparison, the CV curves of the GMS hybrid, GMR, MR, and MS were measured to investigate their catalytic activity for the OER under the same conditions, as shown in Fig. S3b. From this CV curves, it shows that GMS has the lowest onset potential compared to the other catalysts. Further, to examine

![Graphs and images showing the electrocatalytic activity of GMS, GMR, MR, and MS catalysts.](image)

Fig. 5 Durability test by the chronoamperometric responses (percentage of current retained versus operation time) of the MR, GMR, MS, GMS, and high-quality commercial Pt/C catalysts kept at 0.65 V versus RHE in an O$_2$-saturated 0.1 M KOH electrolyte (a) at 1600 rpm and (b) Chronoamperometric responses of GMR, GMS, and a high-quality commercial Pt/C catalysts on glassy carbon kept at 0.65 V vs. RHE. (c) RDE measurements at 1600 rpm on the CO tolerance effect.
the onset of the electrocatalytic OER, the LSVs of the catalysts were performed at a sweep rate of 10 mV s⁻¹, as shown in Fig. 6a. As shown in Fig. 6a the LSV curves, a small (~20 micro amp per cm²) catalytic current was observed at approximately 1.23 V vs. RHE (standard potential for water splitting/OER) for the GMS. In the anodic scan, the GMS electrode exhibited a lower OER onset potential and higher OER peak current (0.12 mA cm⁻²) at an over potential of ~0.54 V as shown in Fig. 6a than those of the other synthesized catalysts. The small Tafel slope was as low as 47 mV/decade, which is comparable to the best performance ever reported using other OER catalysts, as shown in Fig. 6b and Table S1. As an efficient oxygen evolution anode, GMS showed an onset potential of 1.768 V, which is much smaller than those of MR (~2.095 V), MS (~1.923 V), and GMR (~1.901 V), as shown in Fig. 6b.

On the glassy carbon electrode, the GMS catalyst suffered a huge current drop in the durability test (Fig. 6c); the GMS catalyst lost as much as ~38% of its activity after 5000 s operation. The rapid decay in current is mainly due to the obstruction of some active sites on the catalyst by the gradual accumulation of evolved oxygen (O₂) bubbles, as evidenced by the digital images of the electrode taken at 10, 40, and 60 minutes during the test, which clearly show that O₂ bubbles accumulated gradually on the catalyst surface. Consequently, all catalysts exhibited pronounced current decay, which could be caused by the accumulation of gas bubbles that partially block the active sites of the electrode. The other reason for the activity drop is that bubble formation on the catalyst surface may lead to peel-off and delamination of the catalyst from the electrode.

To avoid bubble formation on the electrodes, a durability test was performed using the RDE with a high rotation speed (1600 rpm). The RDE durability test results (Fig. 6d) also confirm that the long term stability of the catalyst is improved greatly (only ~26% activity loss after 6000 s operation) on the RDE and the digital images show that there was almost no O₂ bubble accumulation on the electrode. This is due to the evolved O₂ bubbles being removed from the catalyst and maintains a clean catalyst surface, thereby providing a more reliable way to examine the stability of the OER catalysts. These results make this GMS hybrid material the foremost bifunctional catalyst for both oxygen reduction and evolution. The strong interaction between the Mo oxide species and graphene/rGO during the formation of rGO-MoO₃ is crucial for improving the OER activity. The present GMS catalyst outperformed previously reported catalysts with smaller overpotentials for both ORR and OER, indicating that it is one of the highest performance non-precious metal-based bifunctional catalysts; Table S1 provides a detailed comparison. The excellent catalytic activities of the GMS nanocomposite for both the ORR and OER may be attributed to three main factors. The first is the well-dispersed rGO/MoO₃ nanospheres with a heterogeneous nanocomposite structure (Fig. 2). The second is the high specific surface area of the nanocomposite, which can provide more active sites for both ORR and OER catalysis. Thirdly, the formation of a tunnel structure of MoO₃ results in effective electron-hole separation and affords large special locations for cation insertion and extraction.

4. Conclusions
A facile hydrothermal route has been developed to prepare pristine MoO₃ rods, nanospheres, and their hybrids with reduced graphene oxide. While the MoO₃ rods and MoO₃ nanospheres alone have lower catalytic activity for the Oxygen Reduction Reaction (ORR) and Oxygen Evolution Reaction (OER), their graphene hybrid materials exhibit, surprisingly high ORR activities in alkaline solutions, which are comparable to high quality commercial Pt/C catalysts and exceed the performance of Pt/C in terms of stability, durability, and CO tolerance. Graphene coupled with MoO₃ enables the complete use of the catalyst surface area by minimizing the agglomeration/restacking of graphene sheets, which greatly reduces the accessible surface area of the catalyst. In addition, the enhanced activity of the GMS hybrid can be attributed to the higher structural openness in the tunnel structure of hexagonal MoO₃ when it is coupled with rGO. This work presents a highly promising catalyst for alkaline fuel cells for which there has been a recent resurgence in interest as a solution to electrolyte carbonation. More importantly, the low cost of the synthetic method combined with their promising bifunctional catalytic activity, stability, durability, and CO tolerance effect makes graphene-MoO₃ a new class of electrocatalyst for the next generation fuel cells (both ORR and water splitting/OER). The GMS catalyst offers new opportunities for the development of ORR and OER catalysts with carbon and non-precious metal-based materials, and is believed to be a promising candidate for advanced catalysts for energy conversion.

Acknowledgements
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A2A10004468).

Notes and references
† Footnotes relating to the main text should appear here. These might include comments relevant to but not central to the
matter under discussion, limited experimental and spectral data, and crystallographic data.

References

51. V. Kumar, X. Wang and P. S. Lee, Nanoscale, 2015, 7, 11777.