Parametric study of perovskite solar cells using drift-diffusion modelling

Simon O’Kane1, Giles Richardson2, Ralf Niemann3, Jamie Foster2, Petra Cameron3 and Alison Walker1

1Department of Physics, University of Bath, BA2 7AY, United Kingdom
2Department of Mathematical Sciences, University of Southampton, SO17 1BJ, UK
3Department of Chemistry, University of Bath, BA2 7AY, United Kingdom

Motivation
We have developed a drift-diffusion model of perovskite solar cells that includes the effect of moving ions and is therefore able to predict hysteresis curves similar to those observed in measurements. This model can be used to investigate the effect of different types of ions and different recombination mechanisms.

Asymptotic approximation
Mean ion density \( N_i \sim 10^{19} \text{cm}^{-3} \) [1], making problem too stiff for numerics. However, if the density of ions is that large, it can be assumed that all of the charge accumulates in small Debye layers, causing significant electrostatic potential jumps \( V_d \) in the Debye layers & constant electric field \( E_0 \) in the bulk. This neglects the contribution of electrons & holes, which is valid for \( V < V_d \).

Assuming the main moving ion species to be positively charged I vacancies [2], the surface charge \( Q_s \) in the Debye layers is given by

\[
Q_s = \pm \frac{2qN_iV_f}{1 - \frac{V}{V_f}} \exp\left(\frac{V}{V_f} - 1\right) \frac{V}{V_f}
\]

Figure 1 Simulation domain. The two Debye layers and the bulk form three subdomains.


Recombination mechanisms

Monomolecular hole-dependent in bulk only (no surface recombination)
Shockley-Read-Hall recombination in bulk only (no surface recombination)

Nature of the moving ions

Positive ions (e.g. I vacancies)
Negative ions (e.g. I interstitials)

Testing the asymptotics
To test the asymptotic approximation, a numerical calculation (solid blue lines) was performed for a smaller ion density \( N_i = 10^{17} \text{cm}^{-3} \), scanning from \( V = V_d = 1 \text{ Volt} \) to short circuit then back again. The same calculation was performed with the asymptotic model (dashed green lines).

Figure 2 Time evolution of potential in the perovskite film, calculated with a numerical simulation (solid blue lines) and the asymptotic approximation (dashed green lines).

Figure 3 Calculated current-voltage curves for three recombination mechanisms, with a set of measured curves for comparison. Scan rates are 1 V/s (magenta circles), 500 mV/s (blue crosses), 250 mV/s (cyan squares) and 100 mV/s (green diamonds). Solid lines denote FB→SC scans; broken lines denote SC→FB scans.

Figure 4 Calculated current-voltage curves for three types of mobile ion system, with a set of measured curves for comparison. Scan rates as in Figure 3. A diffusion coefficient of \( 10^{11} \text{cm}^2/\text{s} \) is assumed for all ions. A monomolecular hole-dependent recombination scheme in the bulk was assumed, with no surface recombination.

Conclusions

1. Our drift-diffusion model of perovskite cells with moving ions predicts hysteresis similar to that observed in measurements
2. Asymptotic model validated by numerical simulation
3. I vacancies are the most convincing candidate for the main mobile ion species
4. Assuming linear hole-dependent recombination in the bulk and at the TiO₂ interface yields a good fit to measurement

Contact: S.E.J.O’Kane@bath.ac.uk, G.Richardson@soton.ac.uk, A.B.Walker@bath.ac.uk