Research

Learning sunspot classification


Reference:

Nguyen, T. T., Willis, C. P., Paddon, D. J., Nguyen, S. H. and Nguyen, H. S., 2006. Learning sunspot classification. Fundamenta Informaticae, 72 Jul-Aug (1-3), pp. 295-309.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.

Abstract

Sunspots are the subject of interest to many astronomers and solar physicists. Sunspot observation, analysis and classification form an important part of furthering the knowledge about the Sun. Sunspot classification is a manual and very labor intensive process that could be automated if successfully learned by a machine. This paper presents machine learning approaches to the problem of sunspot classification. The classification scheme attempted was the seven-class Modified Zurich scheme [18]. The data was obtained by processing NASA SOHO/MDI satellite images to extract individual sunspots and their attributes. A series of experiments were performed on the training dataset with an aim of learning sunspot classification and improving prediction accuracy. The experiments involved using decision trees, rough sets, hierarchical clustering and layered learning methods. Sunspots were characterized by their visual properties like size, shape, positions, and were manually classified by comparing extracted sunspots with corresponding active region maps (ARMaps) from the Mees Observatory at the Institute for Astronomy, University of Hawaii.

Details

Item Type Articles
CreatorsNguyen, T. T., Willis, C. P., Paddon, D. J., Nguyen, S. H. and Nguyen, H. S.
DepartmentsFaculty of Science > Computer Science
RefereedYes
StatusPublished
ID Code5330
Additional InformationID number: ISI:000240603000022

Export

Actions (login required)

View Item