Surface modified cellulose scaffolds for tissue engineering


Courtenay, J. C., Johns, M. A., Galembeck, F., Deneke, C., Lanzoni, E. M., Costa, C. A., Scott, J. L. and Sharma, R. I., 2017. Surface modified cellulose scaffolds for tissue engineering. Cellulose, 24 (1), pp. 253-267.

Related documents:

PDF (Published Version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1262kB) | Preview

    Official URL:

    Related URLs:


    We report the ability of cellulose to support cells without the use of matrix ligands on the surface of the material, thus creating a two-component system for tissue engineering of cells and materials. Sheets of bacterial cellulose, grown from a culture medium containing Acetobacter organism were chemically modified with glycidyltrimethylammonium chloride or by oxidation with sodium hypochlorite in the presence of sodium bromide and 2,2,6,6-tetramethylpipiridine 1-oxyl radical to introduce a positive, or negative, charge, respectively. This modification process did not degrade the mechanical properties of the bulk material, but grafting of a positively charged moiety to the cellulose surface (cationic cellulose) increased cell attachment by 70% compared to unmodified cellulose, while negatively charged, oxidised cellulose films (anionic cellulose), showed low levels of cell attachment comparable to those seen for unmodified cellulose. Only a minimal level of cationic surface derivitisation (ca 3% degree of substitution) was required for increased cell attachment and no mediating proteins were required. Cell adhesion studies exhibited the same trends as the attachment studies, while the mean cell area and aspect ratio was highest on the cationic surfaces. Overall, we demonstrated the utility of positively charged bacterial cellulose in tissue engineering in the absence of proteins for cell attachment.


    Item Type Articles
    CreatorsCourtenay, J. C., Johns, M. A., Galembeck, F., Deneke, C., Lanzoni, E. M., Costa, C. A., Scott, J. L. and Sharma, R. I.
    Related URLs
    URLURL Type Full-text
    Uncontrolled Keywordsbacterial cellulose,cell adhesion,surface modification,tissue engineering scaffolds
    DepartmentsFaculty of Science > Chemistry
    Faculty of Engineering & Design > Chemical Engineering
    Research Centres & Institutes > Bioprocessing Research unit (BRU)
    Research CentresCentre for Regenerative Medicine
    EPSRC Centre for Doctoral Training in Statistical Mathematics (SAMBa)
    ID Code53347


    Actions (login required)

    View Item

    Document Downloads

    More statistics for this item...