Research

From comodels to coalgebras: state and arrays


Reference:

Power, J. and Shkaravska, O., 2004. From comodels to coalgebras: state and arrays. Electronic Notes in Theoretical Computer Science, 106, pp. 297-314.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.

Official URL:

http://dx.doi.org/10.1016/j.entcs.2004.02.041

Abstract

We investigate the notion of a comodel of a (countable) Lawvere theory, an evident dual to the notion of previous termmodelnext term. By taking the forgetful functor from the category of previous termcomodelsnext term to Set, every (countable) Lawvere theory generates a comonad on Set. But while Lawvere theories are equivalent to finitary monads on Set, and that result extends to higher cardinality, no such result holds for comonads, and that is not only for size reasons: it is primarily because, while Set is cartesian closed, Setop is not. So every monad with rank on Set generates a comonad on Set, but not conversely. Our leading example is given by the countable Lawvere theory for global state: its category of previous termcomodels is the category of arrays, yielding a precise relationship between global state and arrays. Restricting from arbitrary comonads to those comonads generated by Lawvere theories allows us to study new and interesting constructions, in particular that of tensor product.

Details

Item Type Articles
CreatorsPower, J.and Shkaravska, O.
DOI10.1016/j.entcs.2004.02.041
DepartmentsFaculty of Science > Computer Science
RefereedYes
StatusPublished
ID Code5453

Export

Actions (login required)

View Item