Aligned macroporous TiO$_2$/chitosan/reduced graphene oxide (rGO) composites for photocatalytic applications

Chao Chen1, Yan Zhang2*, Jing Zeng1, Fuqiang Zhang1, Kechao Zhou1, Chris R. Bowen2, Dou Zhang1, *

1State Key Laboratory of Powder Metallurgy, Central South University, 410083, China
2Department of Mechanical Engineering, University of Bath, BA2 7AY, United Kingdom

Abstract: In this paper ice templating is used to fabricate novel TiO$_2$/chitosan/reduced graphene oxide (rGO) composites with a highly aligned macroporous structure for photocatalytic applications. The structure of the composites was readily tailored using the composite composition, for example the lamellar pore width decreased from 50-45 µm to 5-10 µm, while the lamellar thickness increased from 2-3 to 20-25 µm, with an increase of the TiO$_2$ content from 45 to 77 vol.%. Lamellar pore channels between the layers exhibited a more uniform distribution when the rGO content was 1.0 wt.%. The increase in viscosity of the composites with high TiO$_2$ contents led to the formation of smaller ice crystals and smaller lamellar pore sizes to enable the production of composite structures with improved mechanical strength. The TiO$_2$/chitosan/rGO composites exhibited excellent photocatalytic degradation of methyl orange and the photocatalytic efficiency was optimized by control of the active material content and microstructure. The hybrid composites with 1.0 wt.% rGO showed a degradation percentage of 97%, which makes these novel TiO$_2$/chitosan/rGO freeze cast structures attractive materials as high performance and high strength substrates for photocatalytic degradation applications.

Keywords: photocatalytic, aligned porous, composite, reduced graphene oxide

* Corresponding authors: y.zhang2@bath.ac.uk, dzhang@csu.edu.cn
1. Introduction

The use of photo-degradation to remove organic pollutants has attracted attention as an alternative approach in solving environmental problems and pollution control, as compared to other physical, chemical, and biological technologies [1, 2]. Among the many candidate materials systems for photo-catalysis, TiO$_2$ has been the most promising candidate due to its good physical and chemical stability, low cost, superior photocatalytic performance and environmental friendliness [3, 4]. However, due to the wide band gap of this material (3.2 eV), it will only absorb a narrow range of the solar spectrum and this leads to a low photocatalytic efficiency which is a concern for its practical application in photocatalytic decontamination [5].

A variety of approaches have been explored to expand the optical response of TiO$_2$-based materials to a wider range of the solar spectrum. Examples employed to improve the photocatalytic efficiency of TiO$_2$ include surface sensitization using dyes or carbon materials [6], doping with metal or non-metal elements [7, 8], depositing noble metals and preparing composite semiconductors [9]. Recently, more attention has been paid to natural polymers, such as chitosan [10]. Chitosan is generally obtained by deacetylation of chitin, and it is attractive as it has excellent properties for adsorption during photocatalytic processes; this is due to the presence of hydroxyl (–OH) and amino groups (–NH$_2$) within its structure [11]. The reactive functional groups in chitosan are able to provide sites for numerous chemical reactions on the surface of TiO$_2$ if a composite of the two materials is formed. In addition, reduced graphene oxide (rGO) has been reported to provide improved dispersion in water, compared to pure graphene [12], and the residual functional groups are beneficial to achieve a strong bonding between the rGO and other additives, such as TiO$_2$ and chitosan [13]. The combination of TiO$_2$ and rGO can not only effectively enhance the interface coupling within the composites, but also facilitate the separation of electron and hole pairs in the photochemical reaction [14]. As a result, the formation for TiO$_2$/chitosan/rGO provides a promising route to enhance the
photocatalytic activity of TiO\textsubscript{2}-based composites.
In addition to these active materials, the formation of porous TiO\textsubscript{2} structures has drawn attention due to the enhanced surface-to-volume ratio and reduced diffusion path length to allow a robust interaction of the material with any solvent [15-17]. Recently, porous TiO\textsubscript{2} has been shown to exhibit a much higher photocatalytic activity compared to dense/solid materials due to their stronger adsorption to substrates and/or higher light-harvesting ability [18, 19]. The void space can lower the density, increase the active area for catalysis and improve the ability of the catalyst to withstand cyclical changes in volume. One approach to manufacture porous materials is to use ‘freeze casting’, also called ‘ice templating’ which can be readily used to create hierarchical microstructures using a wide range of materials, such as ceramics, metals, polymers and composites [20-22].

In this paper, a facile and environmentally friendly approach is utilized for the synthesis of porous TiO\textsubscript{2}/chitosan/reduced graphene oxide composites for photocatalytic decontamination via a one-step freeze casting process. In order to provide detailed information and find the most useful combination of the materials, structure and properties for photo-degradation applications, the morphology, and pore structure of a range of composite compositions were investigated in detail to enhance the photocatalytic efficiency and mechanical properties of the composites. This work provides environmentally friendly and low energy consumption approach to fabricate TiO\textsubscript{2}-based composites as photo-catalysts with high efficiency and activity in environment remediation and repeated photocatalytic use.

2. Material and methods
2.1 Preparation of reduced graphene oxide (rGO)
Graphene oxide (GO) was synthesized from natural graphite powder by a modification of Hummers method [23]. In brief, 2 g of graphite, 2 g of NaNO\textsubscript{3}, and 92 ml of concentrated
H$_2$SO$_4$ were stirred together in an ice bath. Then, 12 g of KMnO$_4$ was slowly added into the bath. The solution was then stirred at 35 °C for 1 h. Deionized water with a volume of 160 ml was added and the temperature was maintained at 90 °C for 30 min. Finally, 400 ml of pure water and 12 ml of H$_2$O$_2$ (30%) was added into the mixture. The solution was filtered and the filter cake was dispersed in water by an ultrasonic bath. The mixture was washed with a 1:10 HCl solution and deionized water by repeated centrifugation. The obtained sediment was dispersed in water with the help of an ultrasonic bath and dried in air at 45 °C overnight. To obtain the rGO, 0.3 g of GO was dispersed in 500 mL deionized water and mixed with 20 mL of N$_2$H$_4$$\cdotH_2O_4$ solution for 12 h at 95°C. The mixture was then filtered and washed using ethanol and deionized water for several times. The obtained rGO sediments were dried at 60 °C for 24 h.

2.2 Treatment of the TiO$_2$ powder

Figure 1 shows a transmission electron microscopy (TEM) image of the commercial TiO$_2$ (Sinopharm Chemical Reagent Co, Ltd (SCRC)) powders used for preparing the aqueous dispersions for this work. The powder was composed of particles with an average diameter 90-100nm. For preparing dispersions, 2 g of TiO$_2$ powder was dissolved in 40 mL of distilled water, then the resulting solution were dispersed by means of a tumbling ball mill at 15 r/min for 24 h. The TiO$_2$ dispersions exhibited excellent time stability (over 8 h), which represented a suitable time for preparing and processing composites, with neither sedimentation nor precipitation occurring during this period.

Figure 1 TEM image of the commercial TiO$_2$ powder.
2.3 Preparation of macroporous cross-linked TiO$_2$/chitosan/rGO composites

All chemicals were of analytical grade and were used without further purification to create the composites. First, chitosan was dissolved in a 2 wt% acetic acid aqueous solution to form a chitosan solution of 2.5 wt%. The solution was then stirred at room temperature for 24 h, filtered, and then placed in an ultrasonic bath for 20 min. Then, 20 mL of the acidified chitosan solution was cross-linked by mixing with 1 mL of γ-glycidoxypropyltrimethoxysilane (GPTMS, Gelest-ABCR), which was used for the fabrication of the porous composites. A volume of 4 mL of an as-prepared chitosan gel cross-linked with GPTMS was mixed with 4 mL of the TiO$_2$ suspension (50 mg/mL), followed by adding rGO into the mixed suspension and stirred at room temperature for 24 h.

In this research, different additions of rGO and TiO$_2$ based on the water solvent were utilised to create a range of composite compositions and structures, which were 0, 0.5, 1.0, and 1.5 wt.% of rGO and the TiO$_2$ contents of 45, 62, 71, and 77 vol.%, respectively. The volume ratio of cross-linked chitosan solution to aqueous TiO$_2$ suspension was controlled to be 1:1, 1:2, 1:3, and 1:4, designated as T45/CS55, T62/CS38, T71/CS29, and T77/CS23, respectively, with the TiO$_2$ content ranging from 45-77 vol.%. Freeze casting of the above suspensions were carried out by pouring the suspension into a transparent cylindrical polydimethylsiloxane mold, which were then transported to a copper double-side cooling setup which was cooled from room temperature to liquid nitrogen temperature, as shown in Fig. 2. Frozen samples were then demolded and then placed into the vacuum chamber (<10 Pa) of a freeze-drier (FD-1A-50, Beijing Boyikang Medical Equipment Co., China) for 24 h to allow the ice to sublimate.
2.4 Characterization of composite materials

Field emission scanning electron microscopy (SEM, NOVA NANOSEM 230) was used to examine the composite microstructure. To evaluate the mechanical properties, uniaxial compression testing were performed on samples of ~9 mm diameter and ~7 mm height at a crosshead speed of 0.2 mm/min using an electronic universal testing machine (KD11-2, Shenzhen KEJALI Technology Co. Ltd., China). A minimum of five independent stress-strain measurements were obtained per sample. Transmission electron microscopy (TEM) images were obtained from a JEOL JEM–2100 operated at an accelerating voltage at 200 kV. The crystal structure of the samples was examined in θ–2θ mode by X-ray diffraction (XRD, Rigaku D–Max/2550VB+) utilizing Cu K_α radiation ($\lambda=1.5418$ Å). Fourier-transform infrared (FT-IR) spectroscopy was performed with a Nicolet 6700 instrument over the range of 4000–450 cm$^{-1}$ to determine functional groups of the samples.

2.5 Photocatalytic activity of TiO$_2$/chitosan/rGO hybrid composites

The photocatalytic activity of the TiO$_2$/chitosan/rGO composites was evaluated by
investigating decolorization of methyl orange solutions at room temperature. For this process, TiO$_2$/chitosan/rGO composites were cut into cylindrical pieces (diameter of 5mm, length of 10 mm) and placed in a Petri dish containing 100 mL of methyl orange solution (250 mg/L). In each experiment, the Petri dish was kept in the dark for 1 h prior to UV light illumination to achieve adsorption and desorption equilibria. Subsequently, solutions were irradiated using a UV lamp ($\lambda=365$ nm), and at given irradiation time intervals (every 30 min), 2 mL of the sample were then collected and the residual concentration of dye molecules measured by monitoring the change in absorbance at 464 nm for methyl orange, respectively. Calibration graphs for each dye were used to determine time dependent changes in dye concentration in the irradiated solutions. Control experiments in the absence of light or chitosan scaffolds prepared without graphene were also performed.

3. Results and discussion

In this study, rGO was synthesized from graphite powder by a Hummers method. As shown in Fig. 3(a), the XRD spectra of the parent graphite GO and rGO show the transformation of the interlayer spacing, which is a clear indication of a complete transformation from graphite to rGO. The parent graphite has a sharp peak at 26.4°, which was from the diffraction of the (002) planes of graphite. After oxidation, the peak at 26.4° disappeared and a peak at 10.9° was detected, indicating the transition from graphite to GO. A broad peak near 24° revealed the production of rGO after reduction of GO by $\text{N}_2\text{H}_4\cdot\text{H}_2\text{O}_4$. FT-IR experiments were also carried out to investigate the transformation from graphite to rGO. As shown in Fig. 3(b), in the spectrum of GO, the peak at 1724 cm$^{-1}$ is a characteristic of the C=O stretch of the carboxylic group on the graphene oxide. The absorption band appearing near 1600 cm$^{-1}$ in the spectrum of rGO clearly showed the skeletal vibration of the graphene sheets, indicating the formation of rGO during the hydrothermal reaction. The above results further confirmed the
transformation from graphite to rGO.

Fig. 3 (a) XRD and (b) FT-IR diagrams of graphite, GO and rGO.

Fig. 4 (a-d) shows scanning electron microscopy (SEM) micrographs of the porous TiO$_2$/chitosan/rGO composites with 1.0 wt.% rGO and a TiO$_2$ content of 45, 62, 71, and 77 vol.%, respectively. With an increase of the TiO$_2$ content, the lamellar pore width decreased from 50-45 µm to 5-10 µm, while the lamellar thickness increased from 2-3 µm to 20-25 µm. In Fig. 4 (a-c), the detailed dendritic characteristics of the freeze cast structures can be observed on the surface of the lamellar wall as the TiO$_2$ content increased from 45 vol.% to 71 vol.%. However, the lamellar surface became smooth when the TiO$_2$ content increased to 77 vol.%. According to our previous studies [24, 26], as the solid loading of the suspension increases, the viscosity also increases, resulting in a large resistance to the rearrangement of particles to form a replica of the ice structures during the unidirectional solidification process, as shown in Fig. 2. This increased viscosity
therefore leads to the formation of smaller ice crystals and therefore smaller lamellar pore sizes are obtained. Consequently, the fabrication of lamellar porous structures with a smaller pore size can be achieved by increasing the solid loading of the suspension and this enables the formation of composite structures with improved mechanical strength that are easy to be handled more easily during the fabrication process and are more robust to the working conditions of the materials.

Figure 4 SEM images of porous TiO$_2$/chitosan/rGO composites prepared by 1.0 wt.% rGO with TiO$_2$ contents of (a) 45 vol.%, (b) 62 vol.%, (c) 71 vol.%, and (d) 77 vol.%.

Fig. 5 (a-d) shows the SEM micrographs of porous TiO$_2$/chitosan/rGO composites with 45 vol.% TiO$_2$ and rGO contents ranging from 0, 0.5, 1.0 and 1.5 wt.%, respectively. The pore channels exhibited an aligned network along the freezing condition, which can be observed at all ranges of rGO contents, as in our previous studies [24, 25]. With an increase of the rGO content, the lamellar pore structures became more distinct. When the rGO content reached 1.0 wt%, as in Fig. 5(c), the channels between the layers are clearly
visible and exhibit a uniform distribution with a lamellar pore width of 40 to 50 µm and a lamellar wall thickness of 2 to 3 µm. During the directional freezing casting process, the rGO, chitosan chains and the TiO₂ nanoparticles are rejected and entrapped by the adjacent ice crystals, resulting in the formation of a macro-porous structure. The highly aligned lamellar pore structure is advantageous for photocatalytic applications as it provides an easy pathway for mass transfer and minimizes the pressure drop inside the monoliths, which facilitates effective photocatalytic reactions in decontamination. However, the uniformity of the lamellar pore structures begins to disappear when the rGO content is increased to 1.5 wt%, as shown in Fig. 5(d). The parallel nature of the lamellar pore channel decreased with large additions of rGO and maybe related to the less uniform distribution of the rGO when the amount of rGO in the composite mixture exceeds 1.5 wt.%.

Figure 5 SEM images of porous TiO₂/chitosan/rGO composites prepared by 45 vol.% TiO₂ with rGO contents of (a) 0, (b) 0.5 wt.%, (c) 1.0 wt.%, and (d) 1.5 wt.%.
Fig. 6 (a) and (b) show the compressive stress-strain curves of porous TiO$_2$/chitosan/rGO composites with TiO$_2$ contents ranging from 45 vol.% to 77 vol.% and rGO contents ranging from none to 1.5 wt.%, respectively. The compressive load was applied parallel to the freezing direction, as shown in Fig. 4 and 5, as in our previous work [26]. All the stress-strain curves in Fig. 6 exhibited almost linear elasticity for stress levels up to a yield point, followed by a collapse of the stress after a plateau, which probably resulted from buckling of the ceramic wall structure under compression. As a result of the thick ceramic walls formed by the high solid loading, as in accordance to our previous results [26], the compressive strength increased from 0.09 MPa to 0.14 MPa with an increase of the TiO$_2$ content, as shown in Fig. 6 (a). However, the compressive strength of the porous TiO$_2$/chitosan/rGO increased and reached a maximum value of 0.11 MPa at an rGO content of 0.5 wt.%, followed by the decrease in the compressive strength with a further increase of the rGO content from 1.0 to 1.5 wt.%. This level of strength is almost twice as high as TiO$_2$/chitosan composites formed the same freeze casting method [27], indicating that rGO and the more aligned pore channels had a beneficial effect on improving the mechanical properties of chitosan composite scaffolds.

Figure 6 Compressive stress–strain curves of porous TiO$_2$/chitosan/rGO scaffolds with (a) 1.0 wt% rGO and different additions of TiO$_2$ ranging from 45 to 77 vol.% and (b) 45 vol.% of TiO$_2$ and different amounts of rGO ranging from 0 to 1.5 wt.%.

The potential photocatalytic application of the as-prepared porous TiO$_2$/chitosan/rGO composites was evaluated by testing scaffold sections for their activity in terms of oxidative degradation of methyl orange. When incubated in methyl orange solutions, the TiO$_2$/chitosan/rGO scaffolds turned orange in color, indicating strong adsorption of the dye molecules. Subsequent irradiation with UV light resulted in decolorization of the methyl orange-loaded TiO$_2$/chitosan/rGO composite scaffolds, confirming that the scaffold sections exhibited substantial photocatalytic activity. The faster rate of photo degradation of the methyl orange molecules was attributed to increased adsorption of the anionic dye on the surface of the positively charged TiO$_2$ matrix compared with surface binding of cationic methyl orange. In contrast, no decolorization of the dye solutions was observed for cross-linked chitosan/rGO prepared in the absence of TiO$_2$ particles. A time dependent concentration plot is shown in Fig. 7, it can be seen that the photocatalytic activity of the TiO$_2$/chitosan/rGO composites can be improved by the addition of TiO$_2$. The rate of methyl orange degradation for composites with 62 vol.% of TiO$_2$ was significantly higher than that with lower amounts of 45 vol.% TiO$_2$. This was attributed not only to the increased TiO$_2$ content but also due to the lamellar porous structure of the composite which exhibited a small pore size and dendritic characteristic on the surface of the lamellar wall, as in Fig. 5(c). It is noted that the samples with 62 vol.% and 71 vol.% of TiO$_2$, compared to the samples with lower amounts of TiO$_2$, exhibited a low efficiency ratio of the photocatalytic reaction at the initial stages of degradation process (0~40 min in Fig. 7), although these samples then exhibited a higher rate of degradation of methyl orange at later stages of the process. Since the sample with 45 vol.% TiO$_2$ has a large but irregular pore structure (Fig. 5(a)), the methyl orange could initially react with TiO$_2$ quickly at the surface of the scaffold. However, the disordered pore structure restricted a further increase of the degree of degradation of methyl orange. Fig. 7 shows that a further increase of the TiO$_2$ content above 71 vol.% led to the deterioration of the effects of decolorization of the TiO$_2$/chitosan/rGO composites. Samples with 77 vol.% TiO$_2$
exhibited a low rate of degradation, compared to 62 vol.% and 71 vol.%, as a result of the lamellar surface becoming smooth (as shown in Fig. 4d), with a correspondingly smaller surface area.

Figure 7 Photocatalytic degradation plots showing decolorization for methyl orange adsorbed onto macroporous TiO$_2$/chitosan/graphene composites with different additions of TiO$_2$.

Fig. 8 shows the photocatalytic degradation ratio of TiO$_2$/chitosan/graphene composites under UV illumination. As shown in Fig. 8(b), with the addition of 0.5 wt.% rGO the degradation percentage of the TiO$_2$/chitosan/graphene composite reached 90.4%, compared to 74.6% for the TiO$_2$/chitosan scaffold without rGO. When the rGO content increased to 1.0 wt.%, the degradation percentage increased further and reached a maximum of 97%. The rGO sheets in the composite act to increase the photo-absorption and scattering which leads to an increase of the photocatalytic activity of the composites. The TiO$_2$/chitosan/graphene composites with 1.0 wt.% of rGO also show a uniform distribution of lamellar pore structures, as shown in Fig. 4(c). The highly aligned lamellar pore structure provides an easy path for the molecular transfer and minimizes the
pressure drop inside the monoliths [27, 28], which facilitates effective photocatalytic degradation of methyl orange. However, the degradation rate decreased to 87.8% when the rGO content increased to 1.5 wt.%, due to the rGO in to the matrix lowering the contact surface area of TiO$_2$ with methyl orange, as shown in Fig. 5(d).

Figure 8 (a) Photocatalytic degradation plots showing decolorization for methyl orange adsorbed onto macroporous TiO$_2$/chitosan/graphene composites with different additions of rGO. (b) Histogram of degradation rate after 300 min.

4. Conclusions
In this study, highly oriented macro-porous TiO$_2$/chitosan/ reduced graphene oxide (rGO) composites for photocatalytic applications were fabricated using water-based freeze casting. The highly aligned porous composites exhibited distinct lamellar structures with a pore width of 40 to 50 µm and a lamellar wall thickness of 2 to 3 µm. The addition of rGO and the resulting aligned pore channels were beneficial in improving the mechanical properties of chitosan scaffolds. The aligned lamellar pore structure was also advantageous for photocatalytic applications since it provides an easy pathway for mass transfer inside the monoliths, which facilitates effective photocatalytic reactions in decontamination. The amount of TiO$_2$ was tuned to improve the photocatalytic activity of
the TiO$_2$/chitosan/rGO composites and the rate of methyl orange degradation for the samples with 71 vol.% of TiO$_2$ was significantly higher than other systems by control of the active material content and composite architecture. A degradation percentage of 97% was obtained in the samples with 1.0 wt.% of rGO, while using rGO contents above 1.0 wt.% lead to decreased photocatalytic activity due to a reduction of the surface area of the composite materials. These novel TiO$_2$/chitosan/rGO structures are attractive materials as high performance, low-cost and high strength materials for photocatalytic degradation applications.

Acknowledgments

C. Chen, J. Zeng, F. Q. Zhang, K. C. Zhou, D. Zhang would like to acknowledge supports from the National Natural Science Foundation of China (Grant Nos. 51602350 & 51672311), the State Key Laboratory of Powder Metallurgy, Central South University. C. R. Bowen would like to acknowledge funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement no. 320963 on Novel Energy Materials, Engineering Science and Integrated Systems (NEMESIS). Y. Zhang would like to acknowledge the European Commission's Marie Skłodowska-Curie Actions (MSCA), through the Marie Skłodowska-Curie Individual Fellowships (IF-EF) (H2020-MSCA-IF-2015-EF-703950-HEAPPs) under Horizon 2020.

References

Figure caption

Figure 1 TEM image of the commercial TiO₂ powder.

Figure 2 Schematic illustration of the preparation procedures for porous TiO₂/chitosan/rGO composites.

Figure 3 (a) XRD and (b) FT-IR diagrams of graphite, GO and rGO.

Figure 4 SEM images of porous TiO₂/chitosan/rGO composites prepared by 1.0 wt.% rGO with TiO₂ contents of (a) 45 vol.%, (b) 62 vol.%, (c) 71 vol.%, and (d) 77 vol.%.

Figure 5 SEM images of porous TiO₂/chitosan/rGO composites prepared by 45 vol.% TiO₂ with rGO contents of (a) 0, (b) 0.5 wt.%, (c) 1.0 wt.%, and (d) 1.5 wt.%.

Figure 6 Compressive stress–strain curves of porous TiO₂/chitosan/rGO scaffolds with (a) 1.0 wt.% rGO and different additions of TiO₂ ranging from 45 to 77 vol.% and (b) 45 vol.% of TiO₂ and different amounts of rGO ranging from 0 to 1.5 wt.%.

Figure 7 Photocatalytic degradation plots showing decolorization for methyl orange adsorbed onto macroporous TiO₂/chitosan/graphene composites with different additions of TiO₂.

Figure 8 (a) Photocatalytic degradation plots showing decolorization for methyl orange adsorbed onto macroporous TiO₂/chitosan/graphene composites with different additions of rGO. (b) Histogram of degradation rate after 300 min.