Research

The effect of ozone gas sterilization on the properties and cell compatibility of electrospun polycaprolactone scaffolds


Reference:

Rediguieri, C., De Bank, P., Zanin, M. H. A., Leo, P., Cerize, N. N. P., de Oliveira, A. M. and Pinto, T., 2017. The effect of ozone gas sterilization on the properties and cell compatibility of electrospun polycaprolactone scaffolds. Journal of Biomaterials Science, Polymer Edition

Related documents:

[img] PDF (10.1080:09205063.2017.1358549 - Pure) - Repository staff only until 31 July 2018 - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1475kB) | Contact Author

    Abstract

    The growing area of tissue engineering has the potential to alleviate the shortage of tissues and organs for transplantation, and electrospun biomaterial scaffolds are extremely promising devices for translating engineered tissues into a clinical setting. However, to be utilized in this capacity, these medical devices need to be sterile. Traditional methods of sterilization are not always suitable for biomaterials, especially as many commonly used biomedical polymers are sensitive to chemical-, thermal- or radiation-induced damage. Therefore, the objective of this study was to evaluate the suitability of ozone gas for sterilizing electrospun scaffolds of polycaprolactone (PCL), a polymer widely utilized in tissue engineering and regenerative medicine applications, by evaluating if scaffolds composed of either nanofibres or microfibres were differently affected by the sterilization method. The sterility, morphology, mechanical properties, physicochemical properties, and response of cells to nanofibrous and microfibrous PCL scaffolds were assessed after ozone gas sterilization. The sterilization process successfully sterilized the scaffolds and preserved most of their initial attributes, except for mechanical properties. However, although the scaffolds became weaker after sterilization, they were still robust enough to use as tissue engineering scaffolds and this treatment increased the proliferation of L929 fibroblasts while maintaining cell viability, suggesting that ozone gas treatment may be a suitable technique for the sterilization of polymer scaffolds which are significantly damaged by other methods.

    Details

    Item Type Articles
    CreatorsRediguieri, C., De Bank, P., Zanin, M. H. A., Leo, P., Cerize, N. N. P., de Oliveira, A. M. and Pinto, T.
    DOI10.1080/09205063.2017.1358549
    Uncontrolled Keywordssterilization,pcl,electrospinning,ozone,tissue engineering,scaffolds,biomaterials,polymers and plastics
    DepartmentsFaculty of Science > Pharmacy & Pharmacology
    Research CentresCentre for Regenerative Medicine
    RefereedYes
    StatusPublished
    ID Code56563

    Export

    Actions (login required)

    View Item