Research

Accurate fault locator for EHV transmission lines based on radial basis function neural networks


Reference:

Joorabian, M., Asl, S. and Aggarwal, R. K., 2004. Accurate fault locator for EHV transmission lines based on radial basis function neural networks. Electric Power Systems Research, 71 (3), pp. 195-202.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.

Abstract

This paper describes the design and implementation of an artificial neural networks-based fault locator for extra high voltage (EHV) transmission lines. This locator utilizes faulted voltage and current waveforms at one end of the line only. The radial basis function (RBF) networks are trained with data under a variety of fault conditions and used for fault type classification and fault location on the transmission line. The results obtained from testing of RBF networks with simulated fault data and recorded data from a 400 kV system clearly show that this technique is highly robust and very accurate. The technique takes into account all the practical limitations associated with a real system. Thereby making it possible to effectively implement an artificial intelligence (AI) based fault locator on a real system. (C) 2004 Elsevier B.V. All rights reserved.

Details

Item Type Articles
CreatorsJoorabian, M., Asl, S. and Aggarwal, R. K.
DOI10.1016/j.epsr.2004.02.002
DepartmentsFaculty of Engineering & Design > Electronic & Electrical Engineering
RefereedYes
StatusPublished
ID Code5959
Additional InformationID number: ISI:000223583600001

Export

Actions (login required)

View Item