Research

Regularity properties, representation of solutions, and spectral asymptotics of systems with multiplicities


Reference:

Kamotski, I. and Ruzhansky, M., 2007. Regularity properties, representation of solutions, and spectral asymptotics of systems with multiplicities. Communications in Partial Differential Equations, 32 (1), pp. 1-35.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.

Abstract

Properties of solutions of generic hyperbolic systems with multiple characteristics with microlocally diagonalizable principal part are investigated. Solutions are represented as a Picard series with terms in the form of iterated Fourier integral operators. It is shown that this series is an asymptotic expansion with respect to smoothness under quite general geometric conditions on characteristics. Both constant and variable multiplicities are allowed. Propagation of singularities is described and sharp regularity properties of solutions are obtained. Results are applied to establish regularity estimates for scalar weakly hyperbolic equations with involutive characteristics. They are also applied to derive the. rst and second terms of the spectral asymptotics for the corresponding self- adjoint elliptic systems.

Details

Item Type Articles
CreatorsKamotski, I.and Ruzhansky, M.
DOI10.1080/03605300600856816
DepartmentsFaculty of Science > Mathematical Sciences
RefereedYes
StatusPublished
ID Code6971
Additional InformationID number: ISI:000244565200001

Export

Actions (login required)

View Item