
Homogenisation of Exponential Order for ElliptiSystems in In�nite CylindersKarsten MatthiesFreie Universit�at Berlin, Institut f�ur Mathematik IArnimallee 2-6, 14195 Berlin, Germanymatthies�math.fu-berlin.deAugust 13, 2004AbstratWe onsider systems of semilinear ellipti equations on in�nite ylinders with a non-linear rapid periodi inhomogeneity in the unbounded diretion. We transform theequation, suh that the inhomogeneous term is exponentially small in the period of theinhomogeneity for bounded solutions. The results an be used to show that equilib-rium solutions persist as periodi solutions with exponentially small modulation. Theanalyti tools of the paper inlude the dynamial systems approah to ellipti equa-tions, averaging of exponential order for ordinary di�erential equations and extremeregularity (Gevrey lasses).1 Introdution and Main ResultsHomogenisation theory is a major part of the analysis of partial di�erential equations withrapidly osillating oeÆients in time and/or spae, whih aims at eliminating these depen-denies. Often e�etive or homogenized equations are derived whih desribe the model upto a ertain �nite order. When looking for higher order expansions as in e.g. [BaPa89℄ forlinear ellipti problems, we �nd that the orretors must satisfy partial di�erential equationsof higher and higher order, whih are often not well-posed. As a general referenes for resultsand methods of homogenisation theory see e.g. [BPS99, BJP99, JKO94℄. In this paper wefollow a di�erent approah. The homogenisation problem is transformed suh that the termsin the equations, whih are still rapidly osillating, are beyond any �nite order and are infat exponentially small.As a partiular example we investigate periodi homogenisation of systems of semilinearellipti equations, whih are inhomogeneous in an unbounded diretion. Given�2t u+D�xu = f(u; ut;rxu) + "pg(u; ut;rxu; t" ; ") (1.1)for some order p � 0, u 2 IRn in a unbounded ylinder (t; x) 2 IR � 
 with ross-setion
 = [0; L℄d and periodi boundary onditions in x. The nonlinearity g is periodi in � = t" .These equations arise, for example, when analysing the inuene of rapid inhomogeneitieson travelling waves of reation-di�usion equations��u = �t;xu+ f(u); (1.2)1



for a survey on travelling waves and their appliations see [VVV94℄.The equation (1.1) is analysed by ombining four main steps. First we use the spatial-dynamis approah to ellipti with an unbounded diretion. The unbounded diretion isonsidered as `time' and an (ill-posed) evolution problem is then studied. Then we use speialaveraging tehniques for this evolution problem, whih were �rst developped in [Mat01℄ forparaboli equations with rapid time-dependene. As a seond step we modify averagingresults of exponential order for bounded ordinary di�erential equations by Neishtadt [Nei84℄,suh that they an be applied to a �nite dimensional Galerkin approximation of evolutionequation, where the norm of the vetor �eld beomes unbounded with the dimension of theGalerkin approximation k. This will give a homogenised equation, where the inhomogeneousremainder is exponentially small in some algebrai expression of ". The third step dealswith the in�nite-dimensional part, whih is not onsidered in the Galerkin approximation.This will then be estimated using the extreme regularity of the solutions. The remainingGalerkin modes deay exponentially in the dimension k of the our approximation spae.Balaning both exponential estimates together for an appropriate oupling of " and k givesan exponential error estimate. For solutions uniformly bounded on IR�
, we will show thatthe nonautonomous part is of exponential order O(exp(� p" )) after the transformation.To formulate our main results, we are rewriting the ellipti system (1.1) of n seond-orderequations as a system of 2n �rst-order equations. By lettingU = � uut � (1.3)we have Ut = AU + F (U) + "pG(U; t" ; ") (1.4)with AU = � 0 I�D�x 0 �� uut �F (U) = � 0f(u; ut;rxu) �G(U; t" ; ") = � 0g(u; ut;rxu; t" ; ") � :Then it an be onsidered as a dynamial system. Dynamial systems methods haveshown to be very powerful in understanding ellipti equations in in�nite ylinders, see e.g.[Kir82, Mie94, VZ96, FSV99, VZ99℄. The unbounded diretion t is then alled `time'. Wehoose then as phase-spae some Sobolev spae on the ross-setion 
 . We let U 2 X =Hsper(
; IRn)�Hs�1per (
; IRn), for some s > 0. All theorems hold, if we �x s > d2 + 1.We onsider solutions of (1.4) resp. (1.1) whih are uniformly bounded on IR�
 in thefollowing sense: u 2 BC0(IR; Hsper(
; IRn)) \ C0(IR; H2per(
; IRn))ut 2 BC0(IR; Hs�1per (
; IRn)) \ C0(IR; L2(
; IRn))utt 2 BC0(IR; L2(
; IRn)); (H.1)and (1.1) holds weakly in the ross setion for all t. HereBC(IR; Y ) = fu : IR! Y ju ontinuous, supt2IR ju(t)jY <1g;kukBC(IR;Y ) = supt2IR ju(t)jY ; 2



we try to stik to the onvention that k:k denote a sup-norm, while j:j is the norm in ageneral Banah spae. As we assume smoothness of f , it follows that every weak solutionis strong. The hoie of the di�erentiability order s an be relaxed depending on the formof the nonlinearities. The set of bounded solutions, satisfying (H.1) is often also alledthe (trajetory) attrator A of the equation. The dynamis are by translation of the thetrajetories along the `time' diretion, for a more detailed explanation see e.g. [FSV99℄. Inpartiular we onsider solutions, whih are bounded by a onstant R.AR := fu : IR! X;u solves (1.4) and ful�lls (H.1),kukBC(IR;X) � RgThe orresponding attrators of transformed equations will be denoted by ~A and ~AR.We make the following assumptions on f and gg(u; �; ") is periodi in � of period 1 and ontinuous with respet to � and " (H.2)When f; g do not depend on derivatives, we assumef(:); g(:; �; ") : IRn ! IRn are entire for all �; " and s > d2 : (H.3a)If the nonlinearities involve �rst order derivatives with respet to t or x, i.e. they have thegeneral form f(u; ut;rxu) and g(u; ut;rxu; �; �), we assume insteadf(:; :; :); g(:; :; :; �; ") : IRn � IRn � IRn�d ! IRn are entire for all �; " and s > d2 + 1:(H.3b)Our main result is the following.Theorem 1 Assume the hypothesis (H.2) and depending on the form of the nonlinearities(H.3a) or (H.3b) for the equation (1.4). Fix a perturbation order p � 0 and some boundR > 0.Then there exist "0 > 0, C1; C2; C3 > 0 and a t-periodi transformation of (1.4) on aball BX(R) for 0 < " < "0 toVt = AV + F (V ) + �F (V; ") + �(V; t" ; "); (1.5)where �F ; � are di�erentiable for V 2 BX(R), nonlinear and nonloal in the ross-setion,but loal in t. When onsidering bounded solutions V (:) 2 BC(IR; X) of the original equation(1.4) - i.e. V (:) is in the attrator AR - or bounded solutions of (1.5) satisfying (H.1) -i.e. V (:) is in an attrator ~AR - then the inuene of the fast sale on V (:) is exponentiallysmall, uniformly on balls in BC(IR; X):supV (:)2AR[ ~AR k�(V (:); :="; ")kBC(IR;X) � C1 exp(�C2"� 12 ) (1.6)The orretion term an be estimated on BX(R) bysupV (:)2BX(R) k �F (V (:); ")kBC(IR;X) � C3"p: (1.7)Remark 1.1 The estimate (1.6), possibly with hanged onstants C1; C2, also hold forV (:) 2 BC(IR; X), whih are bounded solutions of any system of ellipti equations of type(1.4), whih ful�lls the regularity proposition 2.1.3



This transformation an be used to understand the inuene of the rapid foring onsolutions. Our main interest will be here on `equilibrium' solutions, whih do not dependon t for � = 0, see setion 4. We will ompare the solutions of the trunated equationVt = AV + F (V ) + �F (V; ") (1.8)with the solutions of (1.4) and (1.5). We will see in that `equilibrium' solutions persist underthe foring as solutions periodi in t, whih are exponentially lose to equilibria of (1.8). Ina forth-oming paper the inuene on loalised solutions and their relation to pinning e�etsin (1.2) will be also analysed.The rest of paper is organised as follows. In setion 2 we introdue Gevrey lasses as atool for desribing extreme regularity of the solutions of (1.4), (1.5) and (1.8). The bulk partof the proof of theorem 1 is given in setion 3, where a version with more general assumptions(H.4) and (H.5) is proved. The inuene of rapid foring on equilibrium solutions is analysedin setion 4.2 Gevrey lassesAn important tool is the extremely high regularity of bounded solutions of (1.1). They arereal analyti in the ross-setion and are in speial Gevrey lasses. To de�ne these spaes,we ollet some properties of the di�erential operator A. As above, A is de�ned byAU = � 0 I�D�x 0 �� u1u2 �with D = diag(d1; : : : ; dn). For omparison we also onsider the di�erential operator �A,where all diagonal entries in D are equal:�AU = � 0 I�dminI�x 0 �� u1u2 � ; (2.1)where dmin = min(d1; : : : ; dn).The operator A has both in�nitely many positive and negative eigenvalues. We desribehere the situation for periodi boundary onditions. There are stritly positive eigenvalues�k;l = jkjpdl 2�L for k 2 ZZ dnf0g; l 2 f1; : : : ; ng with eigenfuntionsvk;l(x) = � el exp �i 2�L k � x�jkjpdl 2�L el exp �i 2�L k � x� � ; (2.2)where el is the lth unit vetor in IRn. The negative eigenvalues are �k;l = �jkjpdl 2�L fork 2 ZZ d; l 2 f1; : : : ; dg with eigenfuntionswk;l(y) = � el exp �i 2�L k � x��jkjpdl 2�L el exp �i 2�L k � x� � : (2.3)We denote by A+ the part of A with negative eigenvalues, whih generates an analytisemigroup for positive times: A+vk;l = 0A+wk;l = Awk;l = �k;lwk;l:4



In the same way, A� is the part of A, whih generates an analyti semigroup for negativetimes A�vk;l = Avk;l = �k;lwk;l0A�wk;l = 0:We will also need the projetions P+ and P�:P+vk;l = 0 P+wk;l = wk;lP�vk;l = vk;l P�wk;l = 0;with A+ = AP+ and A� = AP�. Finally de�ne jAj = �A+ + A�. The same analysisholds of ourse for the speial ase of a di�erential operator like �A, with the same oeÆientdmin in all n omponents. The spaes, whih we will use, are de�ned as the domain of theexponential of the operator j �Aj. The Gevrey spaes are de�ned byGs� = D(jAjs exp(�j �Aj)):The graph norm an be expressed using the eigenfuntion expansion. LettingU = Xk2 ZZ d;l=1;:::;nak;lvk;l + bk;lwk;lthenjU j2Gs� = Xk2 ZZ d;l=1;:::;n(jak;lj2 + jbk;lj2)(1 +pdl 2�L jkj)2s exp�2�jkjpdmin 2�L � : (2.4)Note that Gs0 = D(jAjs) = X .As we have to deal with nonloal operators later in the proof anyway, we will reformulatethe assumptions (H.3a) and (H.3b) to inlude a wider lass of nonlinearities. Denoting theball BY (M) = fu 2 Y jjujY �Mg for some Banah spae Y , we will assumeFor some �xed R > 0; �0 > 0; "0 > 0 the following assumptionshold uniformly in 0 � " � "0 and 0 � � � �0F (:); G(:; �; ") : BGs� (2R+ 1)! Gs� are di�erentiableG(:; :; ") : BGs� (2R+ 1)� IR! Gs� is ontinuousThere exist non-dereasing funtions as; bs : [0; 2R+ 1℄! IR;independent of "; � and 0 � � � �0 :jF (U)jGs� � as(jU jGs� )jG(U; �; ")jGs� � bs(jU jGs� )There exists a non-dereasing funtion s;� : [0; 2R+ 1℄! IR independent of "; �jDUF (U)jL(Gs�;Gs�) + jDUG(U; �; ")jL(Gs�;Gs�) � s;�(jU jGs�)
(H.4)

The hypothesis (H.4) holds for all funtions ful�lling (H.2) and one of (H.3a) or (H.3b).But also funtions nonloal in the ross-setion like F (u)(x) = R
 u dx and spatially nonho-mogenuous terms like h(x), h(:) 2 Gs�0 are inluded.The main regularity result is the following.5



Proposition 2.1 Consider bounded solution of (1.4) ful�lling (H.1) and (H.4) (or for loalnonlinearities (H.1), (H.2) and depending on the partiular form (H.3a) or (H.3b)). Thenfor all R > 0, there exists �R > 0, suh that for all U(:) with kU(:)kBC(IR;X) � R,kUkBC(IR;Gs�R) = supt2IR jU(t)jGs�R � 2R+ 1 (2.5)holds.This proposition and its proof use ideas from similar regularity results for paraboliproblems, whih were analysed in [FoTe89, Pro91, TBDHT96, FeTi98℄. We will show themore general part of proposition 2.1 using (H.4). Finally we will show that the hypotheses(H.2) and (H.3a/b) imply (H.4).Proof: To establish the regularity result, we will use a Galerkin approximation by ordinarydi�erential equations. We will derive a priori estimates for solutions ful�lling (H.1). Themain idea here is to split the phase spae in P+X and P�X , where A generates regularisingsemigroups for di�erent time diretions. These two subspaes are treated separately and weget estimates for the Galerkin approximation depending on the time diretion. To deriveestimates at `time' T 0, we start at some earlier time T 0 � T in the spae P+X and use theregularising of exp(A+t) for positive times t, whereas we start in P�X at some time T 0+Tand then go bakwards with the regularising exp(A�t). These estimates do not depend onT0 and thus we get uniform estimates on kUkBC(IR;Gs�).We will use a Galerkin approximation in forward time for P+X . In forward time A+generates an analyti semigroup on P+X . We restrit the Galerkin approximation in bak-ward time to P�X , where A� generates an analyti semigroup in bakward time. So withPN denoting the projetion to HN , whereHN = �spanfvk;l; wk;lg ����k 2 ZZ d; l = 1; : : : ; n; with jkjpdmin 2�L � N� : (2.6)We obtain ddtUN = AUN + PNF (UN ) + PNG(UN ; t" ; ") (2.7)UN(0) = PNU0: (2.8)Considering the P+ part only, we getddtU+N = AU+N + P+PNF (UN ) + P+PNG(UN ; t" ; ");where the nonlinearities also depend on the P�X part. Multiplying both sides with jAjs exp(tj �Aj)and taking the L2(
; IR2n)-salar produt with jAjs exp(tj �Aj)U+N (t) gives on P+X , wherejAj = jA+j:�jA+js exp(tj �A+j) ddtU+N ; jA+js exp(tj �A+j)U+N�= �jA+js exp(tj �A+j)AU+N ; jA+js exp(tj �A+j)U+N�+�jA+js exp(tj �A+j)(P+PNF (UN ) + P+PNG(UN ; t" ; ")); jA+js exp(tj �A+j)U+N� ;where we dropped the expliit dependene of UN on t. Thus12 ddt ��jA+js exp(tj �A+j)U+N ��2L2 6



�(jA+js exp(tj �A+j)j �A+jU+N ; jA+js exp(tj �A+j)U+N )= �(jA+js+1 exp(tj �A+j)U+N ; jA+js exp(tj �A+j)U+N )+(jA+js exp(tj �A+j)(P+PNF (UN ) + P+PNG(UN ; t" ; ")); jA+js exp(tj �A+j)U+N )The �rst term on the right hand side minus the last term on the left hand side is positiveand an thus be dropped in an inequality: As jA+j � j �A+j = jA+ � �A+j is symmetri andpositive, we obtain (jA+js+1 exp(tj �A+j)UN ; jA+js exp(tj �A+j)U+N )�(jA+js exp(tj �A+j)j �A+jUN ; jA+js exp(tj �A+j)U+N )= ���jA+ � �A+j 12 jA+js exp(tj �A+j)UN ���2L2 � 0This yields12 ddt ��jA+js exp(tj �A+j)U+N ��2L2 (2.9)� (jA+js exp(tj �A+j)(P+PNF (UN ) + P+PNG(UN ; t" ; ")); jA+js exp(tj �A+j)U+N ):The left hand side jU(t)jGst depends on t both in U and in the norm. As12 ddt ��jA+js exp(tj �A+j)U+N (t))��2L2 = ddt ���U+N (t)��Gst � ��U+N (t)��Gstand by using the Cauhy-Shwarz inequality on the right hand side of (2.9), we an onludeddt ��U+N (t)��Gst � jP+PNF (UN ) + P+PNG(UN ; t" ; ")jGst� as(jUN jGst ) + bs(jUN jGst ) (2.10)Thus we have a bound in Gevrey norms on U+N (t) for t � 0 with inreasing exponent, if wealso know, that U�N is bounded:jU+N (t)jGst � jU+N (0)jGs0 + Z t0 as(jUN jGs� ) + bs(jUN jGs� )d�: (2.11)Due to ontinuous dependene on t for the ordinary di�erential equation, we an assume,that jUN(t)jGst is bounded on some interval [0; TN ℄, i.e. jUN (t)jGst � M = 2jU0jX + 2 withjUN (TN)jGsTN =M . Thus using (2.11) we have an estimate for t 2 [0; TN ℄jU+N (t)jGst � jU+N (0)jX + t(as(M) + bs(M)); (2.12)with M = 2jU0jX +2 � 2R+1. Assuming jU+N (t)jGst �M=2 we obtain a lower estimate forTN from M=2 � jU+N (TN)jGsTN � jU0jX + TN (as(M) + bs(M)):Hene TN � T � = 1as(2R+ 1) + bs(2R+ 1) (2.13)as long jU�N (t)jGst also remains bounded for t 2 [0; TN ℄.7



When onsidering negative times we get the same estimates for A�, only the time-diretion has to be hanged. For t 2 [�TN ; 0℄ we obtainjU�N (t)jGs�t � jU�N (0)jX + jtj(as(M) + bs(M)); (2.14)where TN is as in (2.13) as long as jU+N (t)jGsjtj also remains bounded for t 2 [�TN ; 0℄.We are aiming at uniform estimates on jUN+ (t) + UN� (t)jGs� for some � > 0. So onsidersome �xed T0, without restrition T0 = 0. Then we start with the P+X part at somenegative time �T < 0 and evolve forward, whereas we start with P�X at some positivetime T > 0 and evolve bakwards. Both evolutions are regularising. Taking (2.12) and(2.14) together givesjUN(0)jGsT � 2(kUkBC0(IR;X) + T (as(M) + bs(M))) (2.15)as long jU�N (t)jGst �M=2 for t 2 [0; T ℄ and jU+N (t)jGsjtj �M=2 for t 2 [�T; 0℄. But for thesewe obtain the same estimate, asjU�N (t)jGst � jUN(t)jGsT for t 2 [0; T ℄jU+N (t)jGsjtj � jUN(t)jGsT for t 2 [�T; 0℄:with T � 1as(2R+1)+bs(2R+1) . Hene we get uniform estimates withM = (2kUkBC0(IR;X)+2).Thus jPNU0jGsT = jUN (0)jGsT � C, and PNU0 onverges in Gs� for � < T , as Gs� embedsompatly in GsT , therefore U0 2 Gs� . Hene if we know, that there is a bounded solutionwith U(T0) = U0, then U0 2 Gs� . Taking these estimates at all times uniformly gives (2.5)kUkL1(IR;Gs�R ) � 2(kUkBC0(IR;X) + �R (as(2R+ 1) + bs(2R+ 1))) � 2R+ 1where we let �R = 12(as(2R+ 1) + bs(2R+ 1)) � T �2 :From (2.10) we get similar estimates on ddtU(0) 2 L2lo(IR;Gs�) and by [Tem77, h.3, lemma1.2℄U is ontinuous in t with values in Gs� , whih proves proposition 2.1 for (H.4).2To omplete the proof of proposition 2.1, the main key is the next lemma, whih willlose the remaining gap that the hypotheses (H.2) and (H.3a/b) imply (H.4). It also seletsour partiular hoie of Gevrey lasses. The nonlinearities in (1.4) map these Gevrey lassesinto themselves.Lemma 2.2 Let f : IRn ! IRn be entire. Let U = � uv � 2 Gs� with s > d2 , then F (U) =� 0f(u) � 2 Gs� and jF (U)jGs� � (1 + C�1s )a(CsjU jGs� )for some funtion a : IR+ ! IR independent of �.Proof: Gevrey spaes for salar problems are Banah algebras, see e.g. [FeTi98, lemma 1℄.For our vetor valued Gevrey lasses, we onsider the 2n-omponents separately. We de�ne8



the salar Gevrey spaes Ĝs� for salar funtions u(:) with u(x) = Pk2 ZZ d uk exp � 2�iL k � x�by Ĝs� = fu 2 L2(
; IR)��jujĜs� <1g; withjuj2̂Gs� = Xk2 ZZ d;l=1;:::;n(a2k;l + b2k;l)(1 + jkj)2s exp�2�jkjpdmin 2�L � :This gives Gs� = (Ĝs�)n � (Ĝs�1� )n and U = (u1; : : : ; un; v1; : : : ; vn)T 2 Gs� withul 2 Ĝs� for l = 1; : : : ; nvl 2 Ĝs�1� for l = 1; : : : ; nFor the omponent funtions ul1 ; ul2 2 Ĝs� we have by [FeTi98, lemma 1℄ for s > d2 , inde-pendent of �: jul1 � ul2 jĜs� � Csjul1 jĜs� jul2 jĜs� : (2.16)Then as f : IRn ! IRn is entire, there exists a power series f(u) = Pj2INn0 ajuj , withaj 2 IRn and uj = uj11 � : : : � ujNn , onverging for all u = (u1; : : : ; un) 2 IRn. Furthermorea(r) = Pk2IN0 �akrk with �ak = Pj2INn0 ;jjj=k jaj jIRn is onvergent for all r 2 IR with jf(u)j �a(juj).To show F (U) 2 Gs� , we estimate a power series expansion of F = (0; f)T and pass tothe limit. In fat we even estimate (f; 0)T by using (2.16)������ NXjjj=0(ajuj ; 0)T ������Gs� � NXjjj=0 jaj jIRn ��uj��Ĝs�� ja0jIRn + NXjjj=1 jaj jIRnCjjj�1s jU jjjjGs�� (1 + C�1s ) NXjjj=0 jaj jIRnCjjjs jU jjjjGs�� (1 + C�1s )a(CsjU jGs�)To pass to the limit we see������ NXjjj=M(ajuj ; 0)������Gs� � (1 + C�1s ) NXjjj=0 jaj jCjjjs jU jjjjGs� ! 0for M;N ! 1. Hene PNjjj=0(ajuj ; 0) = ~F (:) exists in Gs� by the ompleteness of Gs� . The�rst part u of U = (u; ut) is uniformly bounded for � � 0 as u 2 Hsper(
; IRn) ,! BC0(
; IRn)for s > d2 . Furthermore the Gs� norm is in the �rst n omponent stronger than the uniformonvergene norm. Hene the analytiity of f(:) implies PNjjj=0 ajuj(:) ! f(u(:)). Hene(f(u(:)); 0)T 2 Gs� andjF jGs� = j� 0f � jGs� � j� f0 � jGs� � (1 + C�1s )a(CsjU jGs�) (2.17)9



The same argument holds for the time dependent g �rst for �xed "; �. By taking themaximum, we have a uniform majorising funtion b for all " in some ompat interval andfor all times �, using the ontinuity with respet to " and � in (H.2). Then the lemma holdsalso in the time-dependent ase.2A similar lemma holds for nonlinearities involving �rst derivatives, where u2 = �tu1.Lemma 2.3 Let f : IRn� IRn� IRn�d ! IRn be entire. Let U = (u1; u2) 2 Gs� with s > d2 +1,then F (U) = � 0f(u1; u2;rxu1) � 2 Gs�with jF (U)jGs� � sa(CsjU jGs� )for a : IR+ ! IR independent of � and s.Proof: We �rst observe that (u2; 0)T 2 Gs�1� diretly from the de�nition (2.4) withj(u2; 0)T jGs�1� � jU jGs� . Spatial derivatives of u1 with respet to x give in the eigenfun-tion expansion P ak;lvk;l + bk;lwk;l at most a fator jkj, hene j(rxu1; 0)T jGs�1� � jU jGs� .Using the proof of lemma 2.2, espeially the last inequality in (2.17) with s� 1 instead of s,then gives (f(u1; u2;rxu1); 0)T 2 Gs�1� :Hene as A(0; f(u1; u2;rxu1))T = (f(u1; u2;rxu1); 0)T 2 Gs�1�holds, then (0; f(u1; u2;rxu1))T 2 Gs� . By (2.17) we then havejF (U)jGs� � (1 + C�1s )a(CsjU jGs� ; Csju2jGs�1� ; Csjryu1jGs�1� )� sa(CsjU jGs�)This proves the result 2.Corollary 2.4 The assumption (H.2) together with one of the assumptions (H.3a) or (H.3b)implies assumption (H.4).Proof: For the assumption (H.3a) with s > d2 we an use lemma 2.2 to derive all as-sumptions on F = (0; f)T and G = (0; g)T exept the di�erentiability from Gs� ! Gs� andthe boundedness of DUF;DUG on Gs0 . As the nonlinearities are given by power series,they are di�erentiable. Then DUF;DUG an be similarly estimated as in lemma 2.2 andDUF (U); DUG(U; �; ") are bounded linear operators for bounded U , see also [Mat01, lemma2℄. In the same way (H.3b) implies (H.4) with s > d2 + 1 by applying lemma 2.3. 2This also ompletes the proof of proposition 2.1.3 AveragingIn this setion we are going to give the proof of theorem 1. Before going to the tehnialdetails, we outline the proof. There are three main steps:� First we modify averaging results of exponential order for bounded ordinary di�erentialequations by Neishtadt [Nei84℄, suh that they an be applied to a �nite dimensionalGalerkin approximation of equation (1.4), where the norm of the vetor �eld beomesunbounded with the dimension of the Galerkin approximation k. This will give ahomogenised equation, where the inhomogeneous remainder is exponentially small insome algebrai expression of ". 10



DNN s;�Æ (DN )
iIRk

IRkÆ N s;�Æ=2(DN )
Figure 1: The domain DN and its omplex extensions.� The seond step deals with the in�nite-dimensional part, whih is not onsidered inthe Galerkin approximation. This will then be estimated using the extreme regular-ity of bounded solutions. The remaining Galerkin modes deay exponentially in thedimension k of the our approximation spae.� Taking both exponential estimates together for an appropriate oupling of " and kgives error estimate of order exp(�"� 12 ).Due to the onstrution of the homogeneous equations by the Galerkin approximation, whihis nonloal in the ross-setion and does not preserve the seond order struture, there willbe nonloal orretions, whih also destroy the original seond order struture of (1.1).Thus we have to deal with nonloal operators anyway, hene we use the reformulatedassumption (H.4) instead of (H.2), (H.3a) and (H.3b). Furthermore we need to assume ana-lytiity on the Galerkin approximation spae HN , whih is the span of those eigenfuntionsof �A, whih have eigenvalues of modulus � N :HN = �spanfvk;l; wk;lg ����k 2 ZZ d; l = 1; : : : ; n; with jkjpdmin 2�L � N� (3.1)Then the restrited and projeted nonlinearitiesPNF; PNG : DN := HN \ BGs�(M)! HN (3.2)are assumed to be real analyti taking HN �= IRk for k = dimIR(HN ), in aordane with(H.4) we onsider a ball of radius M = 2R + 1. Moreover we assume that the analytiontinuation of the nonlinearities to a omplex Æ-neighbourhood (see �gure 1)N s;�Æ (DN ) := fU = Xj2 ZZ d;jjjpdmin2�L �N U j exp(i2�L jx)jU j 2 CI n; infV 2DN jU � V jGs�(
;CI n) < Ægis uniformly bounded in �;N; t and ", again the ase � = 0 orresponds to the Sobolev normof the phase spae X . To summarise 11



PNF; PNG : DN ! HN is real analytisupUN2N s;�Æ (DN ) jPNF (UN)jGs� � B1supUN2N s;�Æ (DN );t2IR jPNG(UN ; t; h)jGs� � B2 (H.5)We again only onsider solutions V (:) 2 AR � BC(IR; X), whih have a uniform boundR.Theorem 2 Assume (H.4) and (H.5) for the nonlinearities of (1.4). Fix the perturbationorder p � 0 and the bound R > 0. Then there exists a t-periodi transformation of the phasespae BX(R) for 0 < " < "0, given byU = V + "W (V; t" ; ") (3.3)with the following properties. BothW (:; �; ") : BX(R) ! XW (:; �; ") : BGs� (2R+ 1) ! Gs�are analyti. Its image W (X; t" ; ") is �nite dimensional for �xed " and W (:; 0; :) = 0. Thetransformed system has the form��tV (t; x) = AV (t; x) + F (V (t; x)) + �F (V (t); ")(x) + �(V (t); t" ; ")(x); (3.4)with �; �F bounded for V 2 BX(R), but nonloal in the ross-setion.For all bounded solutions V (:) 2 AR � BC(IR; X) of (1.4) and for all solutions V (:) 2BC(IR; X) of (3.4) ful�lling (H.1) with kV (:)kBC(IR;X) � R { i.e. V (:) is in the attrator~AR {, the following estimates on the transformed terms and their derivatives holdsupV (:)2AR[ ~AR k�(V (:); :; ")kBC(IR;X) � C2 exp(�C1"� 12 ): (3.5)supV (:)2BX(R) k �F (V (:); ")kBC(IR;X) � C3"p (3.6)supV 2AR[ ~AR kDV �(V (:); :; ")kL(BC(IR;X);BC(IR;X)) ! 0 for "! 0 (3.7)supV 2BX (R) kDV �F (V (:); ")kL(BC(IR;X);BC(IR;X)) ! 0 for "! 0 (3.8)The exponent C1 is given by min(1; �R), where �R is the Gevrey exponent in (2.5). The on-stants 1; C2; C3; "0 depend on the majorising funtions as and bs in (H.4), on the onstantsB1 and B2 in (H.5) and R.Remark 3.1 The estimates (3.5,3.7) hold similarly for all bounded V (:) 2 BC(IR;Gs�) forsome � > 0. The property V (:) 2 AR [ ~AR is suÆient for this by proposition 2.1.Proof:The proof an be divided into three steps. In the �rst step we analyse a �nite dimensionalproblem by reduing to the Galerkin approximation_UN = AUN + PNF (UN) + "pPNG(UN ; t" ; ")UN (0) = PNU0 2 HN ;12



where AUN = PNAUN and where we hoose N depending on ". The parameter N isby de�nition an upper bound on the largest eigenvalue of j �Aj restrited to the Galerkinapproximation spae HN , see (2.1,3.1). We will ouple N and " byN1+�" � 1; (3.9)where � > 0 is to be hosen later. Step 1 is adapted from the proof of Neishtadt's theorem[Nei84℄ about averaging of exponential order for �nite dimensional ODE. First we makesuessive formal oordinate hanges, suh that the nonautonomous terms are formally ofhigher order in " in the transformed equation_VN = AVN + PNF (VN ) + �F (VN ; ") + �(VN ; t" ; "): (3.10)Then we will give estimates uniformly in " and N(") using the Gevrey norms in Gs� , whihwill give with � = 0 the required estimates in X . We will perform r � 1=" suessiveoordinate hanges, where  is hosen in the proof. In the transformed equation the nonau-tonomous terms are exponentially small in ". In step 2 and step 3 we will onsider againthe full in�nite dimensional problem. We perform the formal oordinate hange and proveerror estimates for the �nite dimensional approximation in step 2. In step 3 we will �nallyombine both estimates to derive the exponential estimates.Step 1: Finite dimensional transformationa) Formal oordinate hangesWe desribe the formal oordinate hanges needed to remove nonautonomous terms. For amoment we suppress the dependene of U on N . The situation after j oordinate hangesis given by _U = AU + PNF (U) + �Fj(U; ") + �j(U; t" ; ") (3.11)with average h�ji(U; ") = R 10 �j(U; �; ")d� = 0 and U in a omplex extended domain DjNwith NÆ=2(DN ) � DjN � NÆ(DN ), see �gure 1. Before performing the �rst oordinatehange, we have �F0 = "phGi and �0 = "p(G � hGi).Starting with (3.11) the next oordinate hange is written asU = V + "Wj(V; �; ") (3.12)with W periodi in � = t" with period 1. Substitution into (3.11) yields to_V + " ��V Wj(V; �; ") _V + ��� Wj(V; �; ")= A(V + "Wj(V; �; ")) + PNF (V + "Wj(V; �; "))+ �Fj(V + "Wj(V; �; "); ") + �j(V + "Wj(V; �; "); �; ")A formal Taylor expansion in V gives_V = �I + " ��V Wj(V; �; ")��1 nAV + PNF (V ) + �Fj(V; ")+"AWj(V; �; ") + �PNF (V )�V "Wj(V; �; ") + � �Fj(V; ")�V "Wj(V; �; ")+�j(V; �; ") + ��j(V; �; ")�V "Wj(V; �; ") + h.o.t.� ��� Wj(V; �; ")o=: AV + PNF (V ) + �Fj(V; ") + a(V; �; "); (3.13)13



where the last equality de�nes a. The term of formal lowest order in ", whih are time-dependent, is �j(V; �; "). To remove this term we letWj(V; �; ") = Z �0 �j(V; �; ")d�:Then we hoose�Fj+1(V; ") = �Fj(V ) + ha(V; :; ")i; �j+1(V; �; h) = a(V; �; ")� ha(V; :; ")i: (3.14)b) Estimates for the �nite dimensional systemWe give rigorous estimates for the formal proedure of part a). Suppose r substitutionsare made altogether for a �xed ". The domain DjN after j substitutions is given by DjN =N s;�Æ�jK(")(DN ) where the funtion K(") is hosen later.We use again the notation kfkGs�;N s;� (D) = supU2N s;� (D) jf(U)jGs� for some omplexextension N s;� (D) of D � HN \ Gs�(
; IR). Then by onstrution we havek�0kGs�;N s;�Æ (DN ) � 2B2"pk �F0kGs�;N s;�Æ (DN ) � B2"puniformly in �. We will show indutively for 1 � j � r:k �FjkGs�;DjN � B1 (3.15)k�jkGs�;DjN � Mj with Mj = 2�jB2"p: (3.16)We will hoose "0 andK(") suh that r substitutions are de�ned for 0 < " < "0, V 2 Dr+1N =N s;�Æ�(r+1)K(")(DN ) 6= ; and the indutive assumptions (3.15) and (3.16) are ful�lled.For the estimates we need the following version of the Cauhy estimates, where the vetornorm j:j in CI k is arbitrary. We will apply it on the Galerkin approximation with norms,whih are indued by the Gevrey norms.Lemma 3.2 (Cauhy estimate) Let f : 
 � CI k ! CI k be analyti and kfk
 = supu2
 jf(u)j.Then j�f�x (x)j � 1� kfk
 for x 2 
 and dist(x; Æ
) � �.This is a simple appliation of the Cauhy formula (see [Mat01, lemma7℄).For indution we assume that (3.15) and (3.16) hold for j. To simplify notation wesuppress the arguments of W and the dependene on time and parameters N ," in thefuntions. We use the notation kfk := kfkGs�;N s;� (D).Then we obtain for the jth oordinate hangek"WjkÆj �Mj"; (3.17)whih yields by lemma 3.2 to k"�Wj�u kÆj�K(") � Mj"K(") : (3.18)We estimate the higher order term a in (3.12).kakÆj�K(") � k �I + " ��V Wj��1 �PNF (V + "Wj) + �Fj(V + "Wj)14



+�j(V + "Wj)� �j(V ) +A(V + "Wj)g� �AV + PNF (V ) + �Fj(V )� kÆj�K(")� k �I + " ��V Wj��1 �"AWj + PNF (V + "Wj)� PNF (V )+ �Fj(V + "Wj)� �Fj(V ) + �j(V + "Wj)� �j(V )�" ��V Wj �AV + PNF (V ) + �Fj(V )�	 kÆj�K(")We an estimate kAV k by NkV k, beause A = B �A with some bounded operator B andk �AjHNk � N . Using Neumann series and the mean value theorem we havekakÆj�K(") � 1Xk=0 k" ��V WjkkÆj�K(")�k"WjkÆj �N + k ��V PNFkÆj�K(")+k ��V �FjkÆj�K(") + k ��V �jkÆj�K(")�+k" ��V WjkÆj�K(") �NkV kÆj + kPNFkÆj + k �FjkÆj ��Applying the Cauhy lemma giveskakÆj�K(") � 2�"Mj �N + B1K(") + 2B1K(")�+ Mj"K(") [NM +B1 + 2B1℄� ;where M is the radius of DN , see 3.2. Using N1+�" � 1, whih is equivalent to N � " �11+� ,and setting K(") = ~K" �1+� (3.19)we obtain kakÆj�K(") �Mj �2"" �11+� + 6 B1~K" �11+� + 2M~K + 6 B1~K" �11+� � � 14Mjfor ~K large enough. Therefore k�j+1kÆj+1 < Mj2 =Mj+1and k �Fj+1 � �FjkÆj+1 < Mj4 :Hene k �Fj+1kÆj+1 � k �F0kÆj+1 + jXk=0 k �Fk+1 � �FkkÆj+1� 14 jXk=0Mk +B2"p � 12B2"p +B2"p � B1 (3.20)for "0 small enough. Thus the indutive statements (3.15) and (3.16) are satis�ed for j + 1for suh a "0 and the above hoie of K("). So we an arry out the oordinate hanges aslong as NÆr (DN ) 6= ;. More preisely, for Ær = Æ � rK(") � Æ=2 we needr = Æ2K(") = Æ2 ~K" �1+� = Æ2 ~K" �1+�15



Letting �� = �r(")(V; t" ; ";N(")) and �F� = �Fr(")(V; ";N(")) we get estimates for Gs�-normsuniform in "! 0; N(")!1, as N s;�Æ=2(DN ) � Dr(")N :k��kGs�;N s;�Æ=2 (DN ) < 2�rB2"p < 2"p exp(�1"� �1+� ); (3.21)k �F�kGs�;N s;�Æ=2 (DN ) < C"p: (3.22)Applying the Cauhy estimate again, also gives estimates on the derivatives:kDU��kGs�;N s;�Æ=4 (DN ) < C exp(�1"� �1+� ); (3.23)kDU �F�kGs�;N s;�Æ=2 (DN ) < C"p: (3.24)Step 2: Transformation of the full systema) Formal TransformationNext we deal with the full in�nite dimensional system. We letU = V + "W (PNV; t" ; ";N);whih means (I�PN )U = (I�PN )V asW 2 HN , i.e. the other modes stay unhanged. HereN = N(") is hosen maximally suh that N1+�" � 1 holds. Thus in the new oordinates weget, when suppressing the arguments t" and " of W_V + " ��PNV W (PNV ) _V + ��� W (PNV )= A(V + "W (PNV )) + F (V + "W (PNV )) + "pG(V + "W (PNV ); t" ; "):Solving for _V gives_V = �I + " ��PNV W (PNV )��1 nA(V + "W (PNV )) + F (V + "W (PNV ))+"pG(V + "W (PNV ); t" ; ")� ��� W (PNV; t" ; ")o:We split Gs� into the Galerkin approximation spae HN and its Gs� orthogonal omplementH?N . By using �I + " ��PNV W (PNV )��1jH?N = IjH?Nwe obtain_V = (I � PN )�AV + F (V + "W (PNV )) + "pG(V + "W (PNV ); t" ; ")�+PN �I + " ��PNV PNW (PNV )��1 PNnA(V + "W (PNV ))+F (V + "W (PNV )) + "pG(V + "W (PNV ); t" ; ")� ��� PNW (V; t" ; ")o= (I � PN )�AV + F (V + "W (PNV )) + "pG(V + "W (PNV ); t" ; ")�16



+PN �AV + F (V ) + �F�(V; ";N) + ��(V; t" ; ";N)�+PN �I + " ��PNV W (PNV )��1 PNnF (V + "W (PNV ))+"pG(V + "W (PNV ); t" ; ")� F (PNV + "W (PNV ))�"pG(PNV + "W (PNV ); t" ; ")o:Thus we have an equation as in (1.5)_V = AV + F (V ) + �F (V; ") + �(V; t" ; ") (3.25)where we group the terms in the following way�F (V; ") = �F�(V; ") + hb1(V; :; ";N("))i (3.26)�(V; t" ; ") = ��(V; t" ; ";N(")) + b(V; t" ; ";N("))� hb1(V; :; ";N("))i; (3.27)with an additional orretion term b = b1+ b2. The in�nite-dimensional orretion b1 of theerror in the higher Galerkin modes (where �A has eigenvalues of modulus greater than N)ours as these modes were negleted in the oordinate transformation. We haveb1(V; t" ; ";N("))= (I � PN)�F (V + "W (PNV ))� F (V ) + "pG(V + "PNW (V ); t" ; ")� : (3.28)We get also a orretion b2 in the �nite dimensional Galerkin spae, as there is an error inthe lower modes due to the negleted inuene of the higher Galerkin modes to the lowerones. It is given byb2(V; t" ; ";N("))= �I + " ��V W (PNV )��1 PN �F (V + "W (PNV ))� F (PNV + "W (PNV ))+"pG(V + "W (PNV ); t" ; ")� "pG(PNV + "W (PNV ); t" ; ")� : (3.29)b) Estimating the full systemTo prove the estimates (3.5, 3.6, 3.7, 3.8) we will show �rst, that bounded solutions of thetransformed equation (3.25) are Gevrey regular. Then the additional terms an be estimatedvery easily using the following observation:We use only that V (t) is uniformly bounded in the Gevrey norm Gs� , this is the reasons,why remark 3.1 holds. When we measure the di�erene between V and its projetion to HNthen we get an exponential estimate:jV (t)� PNV (t)jX � jV (t)jGs� exp (��N) : (3.30)For solutions V (:) in the attrator of (1.4), this holds diretly by proposition 2.1. Aspointed out in remark 1.1, we do not need to assume that V (:) solves the partiular equa-tion, we are transforming, solutions of any other equation, whih ful�lls the assumptions ofproposition 2.1 gives the needed uniform boundedness of the Gevrey norms.17



To show it for the transformed equation, we �rst have to hek the assumptions of theregularity proposition 2.1 for the transformed nonlinearity �F (:)+�(:; t" ; ";N)+b1(:; t" ; ";N)+b2(:; t" ; ";N) for �xed N; ". Then we an use (3.30) to estimate b1 and b2. The property(H.1) for V (:) holds by assumption. It remains to hek (H.4).Consider the nonlinearity �F�(:; ";N) + ��(:; t" ; ";N), whih was de�ned by the �nitedimensional part on DN = HN \ BGs� (M), a ball of radius M = 2R + 1. By (3.21) and(3.22) we have the existene of majorating funtions as; bs independent of �. The existeneof s;� follows from (3.23,3.24). The di�erentiability and ontinuity omes from the fat, thatthey hold for the original equation and the transformation is analyti in U and ontinuousin �. It remains to show the properties forF (:+ "W (PN :)); G(:+ "PNW (:); t" ; ") : BGs� (2R+ 1)! Gs� :The transformation V + "W (V ) is given by the suessive oordinate hanges Vj = Vj+1 +"Wj+1(Vj+1). Using (3.17, 3.18), V +"W (V ) is a near-identity and di�erentiable oordinatehange uniformly for every Gs� norm. The mapping�I + " ��V PNW (V )��1 PNourring in b2 is near to the identity by (3.18). Thus the estimates on F and G and theirderivatives hold in a straight forward way for b1 and b2 and their derivatives too. Thedi�erentiability and ontinuity are preserved by the transformation. Thus the assumption(H.4) of proposition 2.1 holds too, i.e. proposition 2.1 is appliable to the solution V of(3.25).Hene (3.25) has Gevrey regular solutions. We an estimate j�(V (t); t" ; ")jX and j �F (V (t); ")jX .We start with �F (:; ") = �F�(:; ";N) + hb1(:; :; ";N) + b2(:; :; ";N)i. For the �nite dimensionalpart we have j �F�(V; ";N)jX � 3"p by (3.22) for V 2 Xbounded. Estimating hb1i we obtainfor V 2 X = Gs0 bounded:jhb1(V; :; ";N)ijX� j(I � PN )�F (V + "W (PNV ))� F (V ) + "pG(V + "PNW (V ); t" ; ")� jX� supU=V+rW (PNV );r2[0;"℄ jF 0(U)jL(X;X)j"W (PNV )jX + "pB1 � C"p (3.31)beause j"W (PNV )jX � C"p+1.Furthermore we have kDU (hb1i)kL(X;X) � C"p when " ! 0 for U 2 X bounded, as Fand G are C1 in U . This gives together with (3.24) the estimate (3.8).Next we need a slightly more areful analysis for the nonautonomous part:j�jX = j�� + b1 + b2 � hb1ijX :For the �rst part we have by (3.21):j��(V; t" ; ";N)jX � 2"p exp(�1"� �1+� )For b1�hb1i we use the same analysis as for hb1i above, exept we also note that V is boundedin the Gevrey norm Gs� . Hene b1(V ) 2 Gs� and thus with K = fV + r"W (PNV ); r 2 [0; 1℄gjb1(V; t" ; ";N)� hb1(V; :; ";N)ijX � 2j(I � PN )fF (V + "W (PNV ))18



�F (V (t)) + "pG(V + "W (PNV ); t" ; ")gjX� � supU2K jF 0(U)jL(Gs�;Gs�)j"W (PNV )jGs� + "pB1�� exp (��j�N+1j)� C"p exp (��N) : (3.32)For b2(V ), whih was reated by the Galerkin approximation in the �nite dimensional part,we obtain an exponential estimate for V 2 Gs� . For V 2 Gs� de�ne the line segment KV =frV + (1� r)PNV + "W (PNV )jr 2 [0; 1℄g, we then obtainjb2(V; :; ";N)jX� j �I + " ��PNV W (PNV )��1 PN �F (V + "W (PNV ))� F (PNV + "W (PNV ))+"pG(V + "W (PNV ); t" ; ")� "pG(PNV + "W (PNV ); t" ; ")� jX� 2( supU2KV jF 0(U)jL(X;X)jV (t)� PNV (t)jX+ supU2KV jG0(U(t))jL(X;X)jV � PNV jX )� CjV � PNV jX � C exp (��N) ; (3.33)where we used (3.30). As above we also obtain kDU (b1�hb1i+ b2)(V )jL(X;X) ! 0 for "! 0and V 2 Gs� for � > 0, as F;G are C1. This gives, together with (3.23), the estimate (3.7).Step 3: Combining the exponential estimatesWe now balane the exponential estimates of Step 1 and Step 2 using the freedom we stillhave in hoosing � in (3.9). Using that N is maximal suh that N � " �1(1+�) , the estimates(3.32, 3.33) an be expressed in ". Then we an balane the two exponential estimates ofthe di�erent parts of �, the exponent � is then �R given by proposition 2.1.exp(�1"� �1+� ) from (3.21)exp(��R"� 11+� ) from (3.32, 3.33)The best exponential estimate is obtained when hoosing � = 1. Then the estimates are oforder exp(�"� 12 ) and N(") = O("� 12 ). This gives the estimates (3.5,3.6). It just remainsto hek the boundedness of �F and �. The transformed nonlinearities �F and � are boundedon X , sine all estimates hold for Gs� , � � 0 and thus also for X = Gs0 . The estimates in(3.31,3.32, 3.33) do not yield exponential smallness for the ase � = 0, but they give thenstill boundedness. The �nite dimensional part is still exponentially small.Di�erentiability, in fat analytiity of the transformed nonlinearities and of W withrespet to V in some ball of X resp. Gs� follows with the Cauhy estimate as W , �F and �are bounded by the above analysis on a omplex extension of suh balls in X resp. Gs� . 2Remark 3.3 If G is smooth in ", then the onstrution an be modi�ed suh that �F (V; ")and �(V; t" ; ") are smooth in ". This an be done in the same way as in [Mat01, remark9℄.Proof of theorem 1: It remains to hek (H.4) and (H.5), suh that theorem 2 then impliestheorem 1. By orollary 2.4, the assumptions (H.3a)/(H.3b) imply (H.4). To hek (H.5),we restrit and projet F and G to HN . Then F;G are given by a onvergent power series19



in the oeÆients of the eigenfuntion expansion, see [Mat01, remark 6℄. This power seriesonverges for the whole HN . The estimates on the omplex extension follow from lemma2.2 and lemma 2.3 respetively.Thus the assumptions for theorem 1 imply those of theorem 2 and the proof is omplete.24 Equilibrium solutionsWe now apply theorem 1 and 2 to desribe quantitatively the e�et of the nonautonomousforing on speial solutions. Our main interest here is on equilibrium solutions of the original{ unfored { equation.Other speial solutions, to be analysed in a forth-oming paper, whih an be understoodas fronts of veloity 0 for paraboli equations as in (1.2)u� = �(t;x)u+ f(u; �)on a spae-domain (t; x) 2 IR�
 with time � and a parameter � 2 IR. Typially those pinnedfronts exist in the homogenouos ase only for speial parameter values �0, whereas addingnonhomogenouos perturbation "g(u; t) will pin fronts in a whole interval I of parameters.Using theorem 1 and theorem 2 it is possible to show, that the length jI j of the pinninginterval is exponentially small for rapid foring terms "g(u; t=").Here we study equilibria, equilibria are solutions u(t; x) = w(x), whih do not depend ont, i.e. ddtu(t; x) � 0, i.e. D�xw + f(w; 0;rxw) = 0. We will onsider hyperboli equilibria.As in dynamial systems the equilibrium w(x) is alled hyperboli, if the linearised operatorL = A+DF (w;rxw; 0)has no spetrum in a strip near the imaginary axis:spe(L) \ fzjjRe(z)j < Æg = ;:For another de�nition of hyperboli equilibria of ellipti equations on ylinders, see [FSV99,se. 5℄. Note that when we impose periodi boundary onditions, that there is a translationsymmetry in x, reating zero eigenvalues. Adding a slow spatial inhomogeneity h in anappropriate Gevrey spae to break this symmetry is allowed by (H.4), suh that we onsider�2t u+D�xu = f(u; ut;rxu) + "pg(u; ut;rxu; t" ; ") + h(x); (4.1)and the whole theory still applies. It is standard, that hyperboli equilibria persist undersmall autonomous perturbations and that they also persist as solutions, whih are "-periodiin t, under rapid nonautonomous periodi foring. The distane between original and theperturbation is in the order of the perturbation.The new result is, that the periodi solutions, whih are reated by rapid foring ofthe hyperboli equilibria are in fat exponentially lose to hyperboli equilibria of the ho-mogenized equation. Thus the modulation is only exponentially small in the transformedphase-spae.Proposition 4.1 Let the assumptions of theorem 1 hold. Fix some perturbation order p > 0.Furthermore assume that the original unfored equation (1.4 with " = 0) has a hyperboliequilibrium p0. Then the fored solution has a bounded solution p"(t; x), whih is periodi in20



t with period ". The trunated equation (1.8) has a hyperboli equilibrium solution �p". Forthese the following holds:jp0 � �p"jX � C"p (4.2)jp"(t)� �p"jX � C exp(�C1"� 12 ); for all t 2 IR (4.3)i.e. the periodi solution reated by the rapid inhomogeneity is exponentially lose to theequilibrium of the homogenised equation.Proof: To prove the persistene of equilibria and the existene of periodi solutions weapply some impliit funtions argument, similar to Lord et al. in [LPSS00℄. The followingversion of Banah's �xed point theorem is used, see [LPSS00℄.Lemma 4.2 Suppose Y is a Banah spae and H : Y ! ~Y is C1. Assume, that there existsa bounded linear and invertible operator L : Y ! ~Y , an element U0 2 Y and numbers � > 0and 0 < � < 1 suh that1. jI � L�1DH(U)jL(Y;Y ) � � for all U 2 B�(U0)2. jL�1H(U0)jY � (1� �)�There exists then a unique point U� 2 B�(U0) with H(U�) = 0 andjU0 � U�jY � (1� �)�1jL�1H(U0)jYFirst we show the persistene of hyperboli equilibria �p". Consider(A+DUF (p0))�1(A(p0 + U) + F (p0 + U) + �F (p0 + U; "))= U + (A+DUF (p0))�1(F (p0 + U)� F (p0)�DUF (p0)U + �F (p0 + U; "))=: H"(U)To �nd equilibria, we look for zeros near U = 0. The map H is smooth in U as a mapBX(R)! X and by (3.6)jH"(0)j � j(A+DUF (p0))�1 �F (p0; ")j � C"p:Furthermore we havekDUH"(U)� Ik= k(A+DUF (p0))�1(DUF (p0 + U)�DUF (p0) +DU �F (p0 + U; "))k � 12for all U in a small enough ball in X of radius �, uniformly for 0 � " � "0 by (3.8). Henethere is by lemma 4.2 a unique zero �p" 2 B�(U0) � X of H" withj�p" � p0j � C"pThe linearisation A+DUF (�p")+DU �F (�p"; ") is hyperboli for " small enough, sine F is C1and DU �F is small. Furthermore �p" is as smooth in " as �F (U; ") is.To �nd periodi solutions onsiderH(U) = Ut ��AU + F (U) + �F (U; ") + �(U; t" ; ")� (4.4)21



as an operator on some subspae of C0per([0; T ℄; X), the spae of periodi ontinuous funtionson the �nite interval (0; T ) with values in X . Using an impliit funtion argument, we willshow, that there exists a unique solution in this subspae near the equilibrium p0, whihwill be the desired "-periodi solution, when letting T = k", k 2 IN.Let ~X = Hr(
; IRn) � Hr�1(
; IRn) with r 2 IR and r + 1 > s > r � 0 and with theonvention H0 = L2. Then on ~X the domain of A is given by D(A ~X) = Hr+1(
; IRn) �Hr(
; IRn). The Sobolev exponents s > r are hosen suh that F : ~X ! ~X is di�erentiable.This is possible for our the loal nonlinearity in (4.1) by lemma 2.3 and the proof of orollary2.4. We onsider the following linear operator L0 related to (4.4). We will show, that L0 isinvertible and whih will imply by Fredholm arguments, that DH(p0) is also invertible. LetP0 denote the projetion to the n-dimensional kernel of A, spanned by v0;l (see (2.2)).L0(U) = Ut � (A+ P0)UL0 : Y ! ~YWhere we use the following funtion spaes ~Y = C0;per([0; T ℄; ~X), the spae of periodi H�olderontinuous funtions with normkUk ~Y = supt2[0;T ℄ jU(t)j ~X + sup�;t2[0;T ℄ jU(t)� U(�)j ~Xjt� � jand Y = C1per([0; T ℄; ~X) \ C0per([0; T ℄; D(A)) \ fU jUt � (A+ P0)U 2 ~Y g with normkUkY = supt2[0;T ℄(jU(t)j ~X + jU 0(t)jL( ~X; ~X)) + supt2[0;T ℄ jU(t)jD(A) + kUt � (A+ P0)Uk ~Y :Then L0 is invertible. As mentioned in the beginning of setion 2, A� generates an analytisemigroup on P�X for negative times and A+ generates an analyti semigroup on P+X forpositive times. The latter is not hanged by the �nite dimensional perturbation to A++P0,whih still leaves P+X invariant.For f 2 ~Y , the inverse is given byU(t) = Z t0 exp �(A+ + P0)(t� �)�P+f(�)d� + exp �(A+ + P0)t�P+U(0)+ Z Tt exp �A�(� � T )�P�f(�)d� + exp �A�(t� T )�P�U(0);where the U(0) and U(T ) are hosen to ful�l the periodi boundary onditions U(0) = U(T )on (0; T ):P�U(0) = �I � exp �A�(�T )���1 Z T0 exp �A�(� � T )�P�f(�)d�P+U(0) = �I � exp �(A+ + P0)T ���1 Z T0 exp �(A+ + P0)(T � �)�P+f(�)d�:From [Hen83, lemma 3.5.1℄ we then have, that U is even di�erentiable with values insome frational power spae, whih an be identi�ed with the original X , if the H�olderexponent  is large enough, i.e. for  > s� r, then U 2 C1((0; T ); X). Next we onsiderL1 : Y ! ~YL1(U) = Ut �AU �DUF (p0)U22



Again, as U 2 Y implies U 2 C1per([0; T ℄; X), we have then DUF (p0)U 2 C1per([0; T ℄; X) andthus L1(U) 2 ~Y . As C1per([0; T ℄; X) embeds ompatly into ~Y = C0;([0; T ℄; ~X), we havethat DUF (p0) : Y ! ~Y is a ompat operator. Then L1 = L0 � P0 +DUF (p0) is Fredholmof index 0: As L0 is invertible, it is Fredholm of index 0 and Fredholm properties persistunder the ompat perturbation �P0 +DUF (p0). Thus L1 is Fredholm of index 0. Due tothe hyperboliity of the equilibrium p0, the kernel of L1 is trivial, thus L1 is invertible.Next we apply lemma 4.2 to H given in (4.4) and L given byLU = L1U = Ut �AU �DUF (p0)U:ThenjI � L�1DH(U)jL(Y;Y ) = jL�1(DUF (U)�DUF (p0) +DU ( �F (U; ") + �(U; :; "))j � 12 (4.5)holds for U 2 B�(�p") � B2�(p0) for some �xed small � and for 0 < " < "0, as F is C1 andjDU �F (U; ")jL(X;X) 2 o(1) by (3.8). For jDU�(U; ")j we need a more areful analysis: By(3.27)�(U; t" ; ") = ��(U; t" ; ";N(")) + b1(U; t" ; ";N("))� hb1(U; :; ";N("))i+ b2(U; t" ; ";N("))By the analysis in setion 3,jDU (��(V; t" ; ";N(")) + b1(V; t" ; ";N("))� hb1(V; :; ";N("))i)jL(X;X) � C"pfor U 2 BX(R). Now onsiderDU b2, where in general jDUb2(U; t" ; ";N("))jL(X;X) is of orderO(1) for U 2 BX(R). We will use here the regularising property of L�1. As the Sobolevexponent r in the de�nition of ~X is hosen suh that F : ~X ! ~X is di�erentiable we anestimate as follows, suppressing some arguments for notational onveniene.jDU b2(U)jL(X; ~X)= jDUf�I + " ��PNUW (PNU)��1 PN �F (U + "W (PNU))� F (PNU + "W (PNU))+"pG(U + "W (PNU); t" ; ")� "pG(PNU + "W (PNU); t" ; ")�gjL(X; ~X)� CjDF (U + "W (PNU))(id+ " ��PNUW (PNU))�DF (PNU + "W (PNU))(PN + " ��PNUW (PNU)jL(X; ~X) + C"p� C"p + CjDF (U + "W (PNU))(I � PN )jL(X; ~X)+j[DF (U + "W (PNU))�DF (PNU + "W (PNU))℄[PN + " ��PNUW (PNU)℄jL(X; ~X)� C"p + CNr�s + C�;as j(I � PN )jL(X; ~X) � CNr�s and jPNU � U jX � C� uniformly in B�(�p") for N(") � N0large enough. Choosing � small enough and using L�1 : ~Y ! Y and D(A ~X ) � X ompletesthe estimate (4.5).Furthermore jL�1H(�p")jY = jL�1�(�p"; :; "))jY � C exp�� p"� ;23
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