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tWe 
onsider systems of semilinear ellipti
 equations on in�nite 
ylinders with a non-linear rapid periodi
 inhomogeneity in the unbounded dire
tion. We transform theequation, su
h that the inhomogeneous term is exponentially small in the period of theinhomogeneity for bounded solutions. The results 
an be used to show that equilib-rium solutions persist as periodi
 solutions with exponentially small modulation. Theanalyti
 tools of the paper in
lude the dynami
al systems approa
h to ellipti
 equa-tions, averaging of exponential order for ordinary di�erential equations and extremeregularity (Gevrey 
lasses).1 Introdu
tion and Main ResultsHomogenisation theory is a major part of the analysis of partial di�erential equations withrapidly os
illating 
oeÆ
ients in time and/or spa
e, whi
h aims at eliminating these depen-den
ies. Often e�e
tive or homogenized equations are derived whi
h des
ribe the model upto a 
ertain �nite order. When looking for higher order expansions as in e.g. [BaPa89℄ forlinear ellipti
 problems, we �nd that the 
orre
tors must satisfy partial di�erential equationsof higher and higher order, whi
h are often not well-posed. As a general referen
es for resultsand methods of homogenisation theory see e.g. [BPS99, BJP99, JKO94℄. In this paper wefollow a di�erent approa
h. The homogenisation problem is transformed su
h that the termsin the equations, whi
h are still rapidly os
illating, are beyond any �nite order and are infa
t exponentially small.As a parti
ular example we investigate periodi
 homogenisation of systems of semilinearellipti
 equations, whi
h are inhomogeneous in an unbounded dire
tion. Given�2t u+D�xu = f(u; ut;rxu) + "pg(u; ut;rxu; t" ; ") (1.1)for some order p � 0, u 2 IRn in a unbounded 
ylinder (t; x) 2 IR � 
 with 
ross-se
tion
 = [0; L℄d and periodi
 boundary 
onditions in x. The nonlinearity g is periodi
 in � = t" .These equations arise, for example, when analysing the in
uen
e of rapid inhomogeneitieson travelling waves of rea
tion-di�usion equations��u = �t;xu+ f(u); (1.2)1



for a survey on travelling waves and their appli
ations see [VVV94℄.The equation (1.1) is analysed by 
ombining four main steps. First we use the spatial-dynami
s approa
h to ellipti
 with an unbounded dire
tion. The unbounded dire
tion is
onsidered as `time' and an (ill-posed) evolution problem is then studied. Then we use spe
ialaveraging te
hniques for this evolution problem, whi
h were �rst developped in [Mat01℄ forparaboli
 equations with rapid time-dependen
e. As a se
ond step we modify averagingresults of exponential order for bounded ordinary di�erential equations by Neishtadt [Nei84℄,su
h that they 
an be applied to a �nite dimensional Galerkin approximation of evolutionequation, where the norm of the ve
tor �eld be
omes unbounded with the dimension of theGalerkin approximation k. This will give a homogenised equation, where the inhomogeneousremainder is exponentially small in some algebrai
 expression of ". The third step dealswith the in�nite-dimensional part, whi
h is not 
onsidered in the Galerkin approximation.This will then be estimated using the extreme regularity of the solutions. The remainingGalerkin modes de
ay exponentially in the dimension k of the our approximation spa
e.Balan
ing both exponential estimates together for an appropriate 
oupling of " and k givesan exponential error estimate. For solutions uniformly bounded on IR�
, we will show thatthe nonautonomous part is of exponential order O(exp(� 
p" )) after the transformation.To formulate our main results, we are rewriting the ellipti
 system (1.1) of n se
ond-orderequations as a system of 2n �rst-order equations. By lettingU = � uut � (1.3)we have Ut = AU + F (U) + "pG(U; t" ; ") (1.4)with AU = � 0 I�D�x 0 �� uut �F (U) = � 0f(u; ut;rxu) �G(U; t" ; ") = � 0g(u; ut;rxu; t" ; ") � :Then it 
an be 
onsidered as a dynami
al system. Dynami
al systems methods haveshown to be very powerful in understanding ellipti
 equations in in�nite 
ylinders, see e.g.[Kir82, Mie94, VZ96, FSV99, VZ99℄. The unbounded dire
tion t is then 
alled `time'. We
hoose then as phase-spa
e some Sobolev spa
e on the 
ross-se
tion 
 . We let U 2 X =Hsper(
; IRn)�Hs�1per (
; IRn), for some s > 0. All theorems hold, if we �x s > d2 + 1.We 
onsider solutions of (1.4) resp. (1.1) whi
h are uniformly bounded on IR�
 in thefollowing sense: u 2 BC0(IR; Hsper(
; IRn)) \ C0(IR; H2per(
; IRn))ut 2 BC0(IR; Hs�1per (
; IRn)) \ C0(IR; L2(
; IRn))utt 2 BC0(IR; L2(
; IRn)); (H.1)and (1.1) holds weakly in the 
ross se
tion for all t. HereBC(IR; Y ) = fu : IR! Y ju 
ontinuous, supt2IR ju(t)jY <1g;kukBC(IR;Y ) = supt2IR ju(t)jY ; 2



we try to sti
k to the 
onvention that k:k denote a sup-norm, while j:j is the norm in ageneral Bana
h spa
e. As we assume smoothness of f , it follows that every weak solutionis strong. The 
hoi
e of the di�erentiability order s 
an be relaxed depending on the formof the nonlinearities. The set of bounded solutions, satisfying (H.1) is often also 
alledthe (traje
tory) attra
tor A of the equation. The dynami
s are by translation of the thetraje
tories along the `time' dire
tion, for a more detailed explanation see e.g. [FSV99℄. Inparti
ular we 
onsider solutions, whi
h are bounded by a 
onstant R.AR := fu : IR! X;u solves (1.4) and ful�lls (H.1),kukBC(IR;X) � RgThe 
orresponding attra
tors of transformed equations will be denoted by ~A and ~AR.We make the following assumptions on f and gg(u; �; ") is periodi
 in � of period 1 and 
ontinuous with respe
t to � and " (H.2)When f; g do not depend on derivatives, we assumef(:); g(:; �; ") : IRn ! IRn are entire for all �; " and s > d2 : (H.3a)If the nonlinearities involve �rst order derivatives with respe
t to t or x, i.e. they have thegeneral form f(u; ut;rxu) and g(u; ut;rxu; �; �), we assume insteadf(:; :; :); g(:; :; :; �; ") : IRn � IRn � IRn�d ! IRn are entire for all �; " and s > d2 + 1:(H.3b)Our main result is the following.Theorem 1 Assume the hypothesis (H.2) and depending on the form of the nonlinearities(H.3a) or (H.3b) for the equation (1.4). Fix a perturbation order p � 0 and some boundR > 0.Then there exist "0 > 0, C1; C2; C3 > 0 and a t-periodi
 transformation of (1.4) on aball BX(R) for 0 < " < "0 toVt = AV + F (V ) + �F (V; ") + �(V; t" ; "); (1.5)where �F ; � are di�erentiable for V 2 BX(R), nonlinear and nonlo
al in the 
ross-se
tion,but lo
al in t. When 
onsidering bounded solutions V (:) 2 BC(IR; X) of the original equation(1.4) - i.e. V (:) is in the attra
tor AR - or bounded solutions of (1.5) satisfying (H.1) -i.e. V (:) is in an attra
tor ~AR - then the in
uen
e of the fast s
ale on V (:) is exponentiallysmall, uniformly on balls in BC(IR; X):supV (:)2AR[ ~AR k�(V (:); :="; ")kBC(IR;X) � C1 exp(�C2"� 12 ) (1.6)The 
orre
tion term 
an be estimated on BX(R) bysupV (:)2BX(R) k �F (V (:); ")kBC(IR;X) � C3"p: (1.7)Remark 1.1 The estimate (1.6), possibly with 
hanged 
onstants C1; C2, also hold forV (:) 2 BC(IR; X), whi
h are bounded solutions of any system of ellipti
 equations of type(1.4), whi
h ful�lls the regularity proposition 2.1.3



This transformation 
an be used to understand the in
uen
e of the rapid for
ing onsolutions. Our main interest will be here on `equilibrium' solutions, whi
h do not dependon t for � = 0, see se
tion 4. We will 
ompare the solutions of the trun
ated equationVt = AV + F (V ) + �F (V; ") (1.8)with the solutions of (1.4) and (1.5). We will see in that `equilibrium' solutions persist underthe for
ing as solutions periodi
 in t, whi
h are exponentially 
lose to equilibria of (1.8). Ina forth-
oming paper the in
uen
e on lo
alised solutions and their relation to pinning e�e
tsin (1.2) will be also analysed.The rest of paper is organised as follows. In se
tion 2 we introdu
e Gevrey 
lasses as atool for des
ribing extreme regularity of the solutions of (1.4), (1.5) and (1.8). The bulk partof the proof of theorem 1 is given in se
tion 3, where a version with more general assumptions(H.4) and (H.5) is proved. The in
uen
e of rapid for
ing on equilibrium solutions is analysedin se
tion 4.2 Gevrey 
lassesAn important tool is the extremely high regularity of bounded solutions of (1.1). They arereal analyti
 in the 
ross-se
tion and are in spe
ial Gevrey 
lasses. To de�ne these spa
es,we 
olle
t some properties of the di�erential operator A. As above, A is de�ned byAU = � 0 I�D�x 0 �� u1u2 �with D = diag(d1; : : : ; dn). For 
omparison we also 
onsider the di�erential operator �A,where all diagonal entries in D are equal:�AU = � 0 I�dminI�x 0 �� u1u2 � ; (2.1)where dmin = min(d1; : : : ; dn).The operator A has both in�nitely many positive and negative eigenvalues. We des
ribehere the situation for periodi
 boundary 
onditions. There are stri
tly positive eigenvalues�k;l = jkjpdl 2�L for k 2 ZZ dnf0g; l 2 f1; : : : ; ng with eigenfun
tionsvk;l(x) = � el exp �i 2�L k � x�jkjpdl 2�L el exp �i 2�L k � x� � ; (2.2)where el is the lth unit ve
tor in IRn. The negative eigenvalues are �k;l = �jkjpdl 2�L fork 2 ZZ d; l 2 f1; : : : ; dg with eigenfun
tionswk;l(y) = � el exp �i 2�L k � x��jkjpdl 2�L el exp �i 2�L k � x� � : (2.3)We denote by A+ the part of A with negative eigenvalues, whi
h generates an analyti
semigroup for positive times: A+vk;l = 0A+wk;l = Awk;l = �k;lwk;l:4



In the same way, A� is the part of A, whi
h generates an analyti
 semigroup for negativetimes A�vk;l = Avk;l = �k;lwk;l0A�wk;l = 0:We will also need the proje
tions P+ and P�:P+vk;l = 0 P+wk;l = wk;lP�vk;l = vk;l P�wk;l = 0;with A+ = AP+ and A� = AP�. Finally de�ne jAj = �A+ + A�. The same analysisholds of 
ourse for the spe
ial 
ase of a di�erential operator like �A, with the same 
oeÆ
ientdmin in all n 
omponents. The spa
es, whi
h we will use, are de�ned as the domain of theexponential of the operator j �Aj. The Gevrey spa
es are de�ned byGs� = D(jAjs exp(�j �Aj)):The graph norm 
an be expressed using the eigenfun
tion expansion. LettingU = Xk2 ZZ d;l=1;:::;nak;lvk;l + bk;lwk;lthenjU j2Gs� = Xk2 ZZ d;l=1;:::;n(jak;lj2 + jbk;lj2)(1 +pdl 2�L jkj)2s exp�2�jkjpdmin 2�L � : (2.4)Note that Gs0 = D(jAjs) = X .As we have to deal with nonlo
al operators later in the proof anyway, we will reformulatethe assumptions (H.3a) and (H.3b) to in
lude a wider 
lass of nonlinearities. Denoting theball BY (M) = fu 2 Y jjujY �Mg for some Bana
h spa
e Y , we will assumeFor some �xed R > 0; �0 > 0; "0 > 0 the following assumptionshold uniformly in 0 � " � "0 and 0 � � � �0F (:); G(:; �; ") : BGs� (2R+ 1)! Gs� are di�erentiableG(:; :; ") : BGs� (2R+ 1)� IR! Gs� is 
ontinuousThere exist non-de
reasing fun
tions as; bs : [0; 2R+ 1℄! IR;independent of "; � and 0 � � � �0 :jF (U)jGs� � as(jU jGs� )jG(U; �; ")jGs� � bs(jU jGs� )There exists a non-de
reasing fun
tion 
s;� : [0; 2R+ 1℄! IR independent of "; �jDUF (U)jL(Gs�;Gs�) + jDUG(U; �; ")jL(Gs�;Gs�) � 
s;�(jU jGs�)
(H.4)

The hypothesis (H.4) holds for all fun
tions ful�lling (H.2) and one of (H.3a) or (H.3b).But also fun
tions nonlo
al in the 
ross-se
tion like F (u)(x) = R
 u dx and spatially nonho-mogenuous terms like h(x), h(:) 2 Gs�0 are in
luded.The main regularity result is the following.5



Proposition 2.1 Consider bounded solution of (1.4) ful�lling (H.1) and (H.4) (or for lo
alnonlinearities (H.1), (H.2) and depending on the parti
ular form (H.3a) or (H.3b)). Thenfor all R > 0, there exists �R > 0, su
h that for all U(:) with kU(:)kBC(IR;X) � R,kUkBC(IR;Gs�R) = supt2IR jU(t)jGs�R � 2R+ 1 (2.5)holds.This proposition and its proof use ideas from similar regularity results for paraboli
problems, whi
h were analysed in [FoTe89, Pro91, TBDHT96, FeTi98℄. We will show themore general part of proposition 2.1 using (H.4). Finally we will show that the hypotheses(H.2) and (H.3a/b) imply (H.4).Proof: To establish the regularity result, we will use a Galerkin approximation by ordinarydi�erential equations. We will derive a priori estimates for solutions ful�lling (H.1). Themain idea here is to split the phase spa
e in P+X and P�X , where A generates regularisingsemigroups for di�erent time dire
tions. These two subspa
es are treated separately and weget estimates for the Galerkin approximation depending on the time dire
tion. To deriveestimates at `time' T 0, we start at some earlier time T 0 � T in the spa
e P+X and use theregularising of exp(A+t) for positive times t, whereas we start in P�X at some time T 0+Tand then go ba
kwards with the regularising exp(A�t). These estimates do not depend onT0 and thus we get uniform estimates on kUkBC(IR;Gs�).We will use a Galerkin approximation in forward time for P+X . In forward time A+generates an analyti
 semigroup on P+X . We restri
t the Galerkin approximation in ba
k-ward time to P�X , where A� generates an analyti
 semigroup in ba
kward time. So withPN denoting the proje
tion to HN , whereHN = �spanfvk;l; wk;lg ����k 2 ZZ d; l = 1; : : : ; n; with jkjpdmin 2�L � N� : (2.6)We obtain ddtUN = AUN + PNF (UN ) + PNG(UN ; t" ; ") (2.7)UN(0) = PNU0: (2.8)Considering the P+ part only, we getddtU+N = AU+N + P+PNF (UN ) + P+PNG(UN ; t" ; ");where the nonlinearities also depend on the P�X part. Multiplying both sides with jAjs exp(tj �Aj)and taking the L2(
; IR2n)-s
alar produ
t with jAjs exp(tj �Aj)U+N (t) gives on P+X , wherejAj = jA+j:�jA+js exp(tj �A+j) ddtU+N ; jA+js exp(tj �A+j)U+N�= �jA+js exp(tj �A+j)AU+N ; jA+js exp(tj �A+j)U+N�+�jA+js exp(tj �A+j)(P+PNF (UN ) + P+PNG(UN ; t" ; ")); jA+js exp(tj �A+j)U+N� ;where we dropped the expli
it dependen
e of UN on t. Thus12 ddt ��jA+js exp(tj �A+j)U+N ��2L2 6



�(jA+js exp(tj �A+j)j �A+jU+N ; jA+js exp(tj �A+j)U+N )= �(jA+js+1 exp(tj �A+j)U+N ; jA+js exp(tj �A+j)U+N )+(jA+js exp(tj �A+j)(P+PNF (UN ) + P+PNG(UN ; t" ; ")); jA+js exp(tj �A+j)U+N )The �rst term on the right hand side minus the last term on the left hand side is positiveand 
an thus be dropped in an inequality: As jA+j � j �A+j = jA+ � �A+j is symmetri
 andpositive, we obtain (jA+js+1 exp(tj �A+j)UN ; jA+js exp(tj �A+j)U+N )�(jA+js exp(tj �A+j)j �A+jUN ; jA+js exp(tj �A+j)U+N )= ���jA+ � �A+j 12 jA+js exp(tj �A+j)UN ���2L2 � 0This yields12 ddt ��jA+js exp(tj �A+j)U+N ��2L2 (2.9)� (jA+js exp(tj �A+j)(P+PNF (UN ) + P+PNG(UN ; t" ; ")); jA+js exp(tj �A+j)U+N ):The left hand side jU(t)jGst depends on t both in U and in the norm. As12 ddt ��jA+js exp(tj �A+j)U+N (t))��2L2 = ddt ���U+N (t)��Gst � ��U+N (t)��Gstand by using the Cau
hy-S
hwarz inequality on the right hand side of (2.9), we 
an 
on
ludeddt ��U+N (t)��Gst � jP+PNF (UN ) + P+PNG(UN ; t" ; ")jGst� as(jUN jGst ) + bs(jUN jGst ) (2.10)Thus we have a bound in Gevrey norms on U+N (t) for t � 0 with in
reasing exponent, if wealso know, that U�N is bounded:jU+N (t)jGst � jU+N (0)jGs0 + Z t0 as(jUN jGs� ) + bs(jUN jGs� )d�: (2.11)Due to 
ontinuous dependen
e on t for the ordinary di�erential equation, we 
an assume,that jUN(t)jGst is bounded on some interval [0; TN ℄, i.e. jUN (t)jGst � M = 2jU0jX + 2 withjUN (TN)jGsTN =M . Thus using (2.11) we have an estimate for t 2 [0; TN ℄jU+N (t)jGst � jU+N (0)jX + t(as(M) + bs(M)); (2.12)with M = 2jU0jX +2 � 2R+1. Assuming jU+N (t)jGst �M=2 we obtain a lower estimate forTN from M=2 � jU+N (TN)jGsTN � jU0jX + TN (as(M) + bs(M)):Hen
e TN � T � = 1as(2R+ 1) + bs(2R+ 1) (2.13)as long jU�N (t)jGst also remains bounded for t 2 [0; TN ℄.7



When 
onsidering negative times we get the same estimates for A�, only the time-dire
tion has to be 
hanged. For t 2 [�TN ; 0℄ we obtainjU�N (t)jGs�t � jU�N (0)jX + jtj(as(M) + bs(M)); (2.14)where TN is as in (2.13) as long as jU+N (t)jGsjtj also remains bounded for t 2 [�TN ; 0℄.We are aiming at uniform estimates on jUN+ (t) + UN� (t)jGs� for some � > 0. So 
onsidersome �xed T0, without restri
tion T0 = 0. Then we start with the P+X part at somenegative time �T < 0 and evolve forward, whereas we start with P�X at some positivetime T > 0 and evolve ba
kwards. Both evolutions are regularising. Taking (2.12) and(2.14) together givesjUN(0)jGsT � 2(kUkBC0(IR;X) + T (as(M) + bs(M))) (2.15)as long jU�N (t)jGst �M=2 for t 2 [0; T ℄ and jU+N (t)jGsjtj �M=2 for t 2 [�T; 0℄. But for thesewe obtain the same estimate, asjU�N (t)jGst � jUN(t)jGsT for t 2 [0; T ℄jU+N (t)jGsjtj � jUN(t)jGsT for t 2 [�T; 0℄:with T � 1as(2R+1)+bs(2R+1) . Hen
e we get uniform estimates withM = (2kUkBC0(IR;X)+2).Thus jPNU0jGsT = jUN (0)jGsT � C, and PNU0 
onverges in Gs� for � < T , as Gs� embeds
ompa
tly in GsT , therefore U0 2 Gs� . Hen
e if we know, that there is a bounded solutionwith U(T0) = U0, then U0 2 Gs� . Taking these estimates at all times uniformly gives (2.5)kUkL1(IR;Gs�R ) � 2(kUkBC0(IR;X) + �R (as(2R+ 1) + bs(2R+ 1))) � 2R+ 1where we let �R = 12(as(2R+ 1) + bs(2R+ 1)) � T �2 :From (2.10) we get similar estimates on ddtU(0) 2 L2lo
(IR;Gs�) and by [Tem77, 
h.3, lemma1.2℄U is 
ontinuous in t with values in Gs� , whi
h proves proposition 2.1 for (H.4).2To 
omplete the proof of proposition 2.1, the main key is the next lemma, whi
h will
lose the remaining gap that the hypotheses (H.2) and (H.3a/b) imply (H.4). It also sele
tsour parti
ular 
hoi
e of Gevrey 
lasses. The nonlinearities in (1.4) map these Gevrey 
lassesinto themselves.Lemma 2.2 Let f : IRn ! IRn be entire. Let U = � uv � 2 Gs� with s > d2 , then F (U) =� 0f(u) � 2 Gs� and jF (U)jGs� � (1 + C�1s )a(CsjU jGs� )for some fun
tion a : IR+ ! IR independent of �.Proof: Gevrey spa
es for s
alar problems are Bana
h algebras, see e.g. [FeTi98, lemma 1℄.For our ve
tor valued Gevrey 
lasses, we 
onsider the 2n-
omponents separately. We de�ne8



the s
alar Gevrey spa
es Ĝs� for s
alar fun
tions u(:) with u(x) = Pk2 ZZ d uk exp � 2�iL k � x�by Ĝs� = fu 2 L2(
; IR)��jujĜs� <1g; withjuj2̂Gs� = Xk2 ZZ d;l=1;:::;n(a2k;l + b2k;l)(1 + jkj)2s exp�2�jkjpdmin 2�L � :This gives Gs� = (Ĝs�)n � (Ĝs�1� )n and U = (u1; : : : ; un; v1; : : : ; vn)T 2 Gs� withul 2 Ĝs� for l = 1; : : : ; nvl 2 Ĝs�1� for l = 1; : : : ; nFor the 
omponent fun
tions ul1 ; ul2 2 Ĝs� we have by [FeTi98, lemma 1℄ for s > d2 , inde-pendent of �: jul1 � ul2 jĜs� � Csjul1 jĜs� jul2 jĜs� : (2.16)Then as f : IRn ! IRn is entire, there exists a power series f(u) = Pj2INn0 ajuj , withaj 2 IRn and uj = uj11 � : : : � ujNn , 
onverging for all u = (u1; : : : ; un) 2 IRn. Furthermorea(r) = Pk2IN0 �akrk with �ak = Pj2INn0 ;jjj=k jaj jIRn is 
onvergent for all r 2 IR with jf(u)j �a(juj).To show F (U) 2 Gs� , we estimate a power series expansion of F = (0; f)T and pass tothe limit. In fa
t we even estimate (f; 0)T by using (2.16)������ NXjjj=0(ajuj ; 0)T ������Gs� � NXjjj=0 jaj jIRn ��uj��Ĝs�� ja0jIRn + NXjjj=1 jaj jIRnCjjj�1s jU jjjjGs�� (1 + C�1s ) NXjjj=0 jaj jIRnCjjjs jU jjjjGs�� (1 + C�1s )a(CsjU jGs�)To pass to the limit we see������ NXjjj=M(ajuj ; 0)������Gs� � (1 + C�1s ) NXjjj=0 jaj jCjjjs jU jjjjGs� ! 0for M;N ! 1. Hen
e PNjjj=0(ajuj ; 0) = ~F (:) exists in Gs� by the 
ompleteness of Gs� . The�rst part u of U = (u; ut) is uniformly bounded for � � 0 as u 2 Hsper(
; IRn) ,! BC0(
; IRn)for s > d2 . Furthermore the Gs� norm is in the �rst n 
omponent stronger than the uniform
onvergen
e norm. Hen
e the analyti
ity of f(:) implies PNjjj=0 ajuj(:) ! f(u(:)). Hen
e(f(u(:)); 0)T 2 Gs� andjF jGs� = j� 0f � jGs� � j� f0 � jGs� � (1 + C�1s )a(CsjU jGs�) (2.17)9



The same argument holds for the time dependent g �rst for �xed "; �. By taking themaximum, we have a uniform majorising fun
tion b for all " in some 
ompa
t interval andfor all times �, using the 
ontinuity with respe
t to " and � in (H.2). Then the lemma holdsalso in the time-dependent 
ase.2A similar lemma holds for nonlinearities involving �rst derivatives, where u2 = �tu1.Lemma 2.3 Let f : IRn� IRn� IRn�d ! IRn be entire. Let U = (u1; u2) 2 Gs� with s > d2 +1,then F (U) = � 0f(u1; u2;rxu1) � 2 Gs�with jF (U)jGs� � 
sa(CsjU jGs� )for a : IR+ ! IR independent of � and s.Proof: We �rst observe that (u2; 0)T 2 Gs�1� dire
tly from the de�nition (2.4) withj(u2; 0)T jGs�1� � jU jGs� . Spatial derivatives of u1 with respe
t to x give in the eigenfun
-tion expansion P ak;lvk;l + bk;lwk;l at most a fa
tor jkj, hen
e j(rxu1; 0)T jGs�1� � jU jGs� .Using the proof of lemma 2.2, espe
ially the last inequality in (2.17) with s� 1 instead of s,then gives (f(u1; u2;rxu1); 0)T 2 Gs�1� :Hen
e as A(0; f(u1; u2;rxu1))T = (f(u1; u2;rxu1); 0)T 2 Gs�1�holds, then (0; f(u1; u2;rxu1))T 2 Gs� . By (2.17) we then havejF (U)jGs� � (1 + C�1s )a(CsjU jGs� ; Csju2jGs�1� ; Csjryu1jGs�1� )� 
sa(CsjU jGs�)This proves the result 2.Corollary 2.4 The assumption (H.2) together with one of the assumptions (H.3a) or (H.3b)implies assumption (H.4).Proof: For the assumption (H.3a) with s > d2 we 
an use lemma 2.2 to derive all as-sumptions on F = (0; f)T and G = (0; g)T ex
ept the di�erentiability from Gs� ! Gs� andthe boundedness of DUF;DUG on Gs0 . As the nonlinearities are given by power series,they are di�erentiable. Then DUF;DUG 
an be similarly estimated as in lemma 2.2 andDUF (U); DUG(U; �; ") are bounded linear operators for bounded U , see also [Mat01, lemma2℄. In the same way (H.3b) implies (H.4) with s > d2 + 1 by applying lemma 2.3. 2This also 
ompletes the proof of proposition 2.1.3 AveragingIn this se
tion we are going to give the proof of theorem 1. Before going to the te
hni
aldetails, we outline the proof. There are three main steps:� First we modify averaging results of exponential order for bounded ordinary di�erentialequations by Neishtadt [Nei84℄, su
h that they 
an be applied to a �nite dimensionalGalerkin approximation of equation (1.4), where the norm of the ve
tor �eld be
omesunbounded with the dimension of the Galerkin approximation k. This will give ahomogenised equation, where the inhomogeneous remainder is exponentially small insome algebrai
 expression of ". 10



DNN s;�Æ (DN )
iIRk

IRkÆ N s;�Æ=2(DN )
Figure 1: The domain DN and its 
omplex extensions.� The se
ond step deals with the in�nite-dimensional part, whi
h is not 
onsidered inthe Galerkin approximation. This will then be estimated using the extreme regular-ity of bounded solutions. The remaining Galerkin modes de
ay exponentially in thedimension k of the our approximation spa
e.� Taking both exponential estimates together for an appropriate 
oupling of " and kgives error estimate of order exp(�
"� 12 ).Due to the 
onstru
tion of the homogeneous equations by the Galerkin approximation, whi
his nonlo
al in the 
ross-se
tion and does not preserve the se
ond order stru
ture, there willbe nonlo
al 
orre
tions, whi
h also destroy the original se
ond order stru
ture of (1.1).Thus we have to deal with nonlo
al operators anyway, hen
e we use the reformulatedassumption (H.4) instead of (H.2), (H.3a) and (H.3b). Furthermore we need to assume ana-lyti
ity on the Galerkin approximation spa
e HN , whi
h is the span of those eigenfun
tionsof �A, whi
h have eigenvalues of modulus � N :HN = �spanfvk;l; wk;lg ����k 2 ZZ d; l = 1; : : : ; n; with jkjpdmin 2�L � N� (3.1)Then the restri
ted and proje
ted nonlinearitiesPNF; PNG : DN := HN \ BGs�(M)! HN (3.2)are assumed to be real analyti
 taking HN �= IRk for k = dimIR(HN ), in a

ordan
e with(H.4) we 
onsider a ball of radius M = 2R + 1. Moreover we assume that the analyti

ontinuation of the nonlinearities to a 
omplex Æ-neighbourhood (see �gure 1)N s;�Æ (DN ) := fU = Xj2 ZZ d;jjjpdmin2�L �N U j exp(i2�L jx)jU j 2 CI n; infV 2DN jU � V jGs�(
;CI n) < Ægis uniformly bounded in �;N; t and ", again the 
ase � = 0 
orresponds to the Sobolev normof the phase spa
e X . To summarise 11



PNF; PNG : DN ! HN is real analyti
supUN2N s;�Æ (DN ) jPNF (UN)jGs� � B1supUN2N s;�Æ (DN );t2IR jPNG(UN ; t; h)jGs� � B2 (H.5)We again only 
onsider solutions V (:) 2 AR � BC(IR; X), whi
h have a uniform boundR.Theorem 2 Assume (H.4) and (H.5) for the nonlinearities of (1.4). Fix the perturbationorder p � 0 and the bound R > 0. Then there exists a t-periodi
 transformation of the phasespa
e BX(R) for 0 < " < "0, given byU = V + "W (V; t" ; ") (3.3)with the following properties. BothW (:; �; ") : BX(R) ! XW (:; �; ") : BGs� (2R+ 1) ! Gs�are analyti
. Its image W (X; t" ; ") is �nite dimensional for �xed " and W (:; 0; :) = 0. Thetransformed system has the form��tV (t; x) = AV (t; x) + F (V (t; x)) + �F (V (t); ")(x) + �(V (t); t" ; ")(x); (3.4)with �; �F bounded for V 2 BX(R), but nonlo
al in the 
ross-se
tion.For all bounded solutions V (:) 2 AR � BC(IR; X) of (1.4) and for all solutions V (:) 2BC(IR; X) of (3.4) ful�lling (H.1) with kV (:)kBC(IR;X) � R { i.e. V (:) is in the attra
tor~AR {, the following estimates on the transformed terms and their derivatives holdsupV (:)2AR[ ~AR k�(V (:); :; ")kBC(IR;X) � C2 exp(�C1"� 12 ): (3.5)supV (:)2BX(R) k �F (V (:); ")kBC(IR;X) � C3"p (3.6)supV 2AR[ ~AR kDV �(V (:); :; ")kL(BC(IR;X);BC(IR;X)) ! 0 for "! 0 (3.7)supV 2BX (R) kDV �F (V (:); ")kL(BC(IR;X);BC(IR;X)) ! 0 for "! 0 (3.8)The exponent C1 is given by min(
1; �R), where �R is the Gevrey exponent in (2.5). The 
on-stants 
1; C2; C3; "0 depend on the majorising fun
tions as and bs in (H.4), on the 
onstantsB1 and B2 in (H.5) and R.Remark 3.1 The estimates (3.5,3.7) hold similarly for all bounded V (:) 2 BC(IR;Gs�) forsome � > 0. The property V (:) 2 AR [ ~AR is suÆ
ient for this by proposition 2.1.Proof:The proof 
an be divided into three steps. In the �rst step we analyse a �nite dimensionalproblem by redu
ing to the Galerkin approximation_UN = AUN + PNF (UN) + "pPNG(UN ; t" ; ")UN (0) = PNU0 2 HN ;12



where AUN = PNAUN and where we 
hoose N depending on ". The parameter N isby de�nition an upper bound on the largest eigenvalue of j �Aj restri
ted to the Galerkinapproximation spa
e HN , see (2.1,3.1). We will 
ouple N and " byN1+�" � 1; (3.9)where � > 0 is to be 
hosen later. Step 1 is adapted from the proof of Neishtadt's theorem[Nei84℄ about averaging of exponential order for �nite dimensional ODE. First we makesu

essive formal 
oordinate 
hanges, su
h that the nonautonomous terms are formally ofhigher order in " in the transformed equation_VN = AVN + PNF (VN ) + �F (VN ; ") + �(VN ; t" ; "): (3.10)Then we will give estimates uniformly in " and N(") using the Gevrey norms in Gs� , whi
hwill give with � = 0 the required estimates in X . We will perform r � 1="
 su

essive
oordinate 
hanges, where 
 is 
hosen in the proof. In the transformed equation the nonau-tonomous terms are exponentially small in ". In step 2 and step 3 we will 
onsider againthe full in�nite dimensional problem. We perform the formal 
oordinate 
hange and proveerror estimates for the �nite dimensional approximation in step 2. In step 3 we will �nally
ombine both estimates to derive the exponential estimates.Step 1: Finite dimensional transformationa) Formal 
oordinate 
hangesWe des
ribe the formal 
oordinate 
hanges needed to remove nonautonomous terms. For amoment we suppress the dependen
e of U on N . The situation after j 
oordinate 
hangesis given by _U = AU + PNF (U) + �Fj(U; ") + �j(U; t" ; ") (3.11)with average h�ji(U; ") = R 10 �j(U; �; ")d� = 0 and U in a 
omplex extended domain DjNwith NÆ=2(DN ) � DjN � NÆ(DN ), see �gure 1. Before performing the �rst 
oordinate
hange, we have �F0 = "phGi and �0 = "p(G � hGi).Starting with (3.11) the next 
oordinate 
hange is written asU = V + "Wj(V; �; ") (3.12)with W periodi
 in � = t" with period 1. Substitution into (3.11) yields to_V + " ��V Wj(V; �; ") _V + ��� Wj(V; �; ")= A(V + "Wj(V; �; ")) + PNF (V + "Wj(V; �; "))+ �Fj(V + "Wj(V; �; "); ") + �j(V + "Wj(V; �; "); �; ")A formal Taylor expansion in V gives_V = �I + " ��V Wj(V; �; ")��1 nAV + PNF (V ) + �Fj(V; ")+"AWj(V; �; ") + �PNF (V )�V "Wj(V; �; ") + � �Fj(V; ")�V "Wj(V; �; ")+�j(V; �; ") + ��j(V; �; ")�V "Wj(V; �; ") + h.o.t.� ��� Wj(V; �; ")o=: AV + PNF (V ) + �Fj(V; ") + a(V; �; "); (3.13)13



where the last equality de�nes a. The term of formal lowest order in ", whi
h are time-dependent, is �j(V; �; "). To remove this term we letWj(V; �; ") = Z �0 �j(V; �; ")d�:Then we 
hoose�Fj+1(V; ") = �Fj(V ) + ha(V; :; ")i; �j+1(V; �; h) = a(V; �; ")� ha(V; :; ")i: (3.14)b) Estimates for the �nite dimensional systemWe give rigorous estimates for the formal pro
edure of part a). Suppose r substitutionsare made altogether for a �xed ". The domain DjN after j substitutions is given by DjN =N s;�Æ�jK(")(DN ) where the fun
tion K(") is 
hosen later.We use again the notation kfkGs�;N s;�
 (D) = supU2N s;�
 (D) jf(U)jGs� for some 
omplexextension N s;�
 (D) of D � HN \ Gs�(
; IR). Then by 
onstru
tion we havek�0kGs�;N s;�Æ (DN ) � 2B2"pk �F0kGs�;N s;�Æ (DN ) � B2"puniformly in �. We will show indu
tively for 1 � j � r:k �FjkGs�;DjN � B1 (3.15)k�jkGs�;DjN � Mj with Mj = 2�jB2"p: (3.16)We will 
hoose "0 andK(") su
h that r substitutions are de�ned for 0 < " < "0, V 2 Dr+1N =N s;�Æ�(r+1)K(")(DN ) 6= ; and the indu
tive assumptions (3.15) and (3.16) are ful�lled.For the estimates we need the following version of the Cau
hy estimates, where the ve
tornorm j:j in CI k is arbitrary. We will apply it on the Galerkin approximation with norms,whi
h are indu
ed by the Gevrey norms.Lemma 3.2 (Cau
hy estimate) Let f : 
 � CI k ! CI k be analyti
 and kfk
 = supu2
 jf(u)j.Then j�f�x (x)j � 1� kfk
 for x 2 
 and dist(x; Æ
) � �.This is a simple appli
ation of the Cau
hy formula (see [Mat01, lemma7℄).For indu
tion we assume that (3.15) and (3.16) hold for j. To simplify notation wesuppress the arguments of W and the dependen
e on time and parameters N ," in thefun
tions. We use the notation kfk
 := kfkGs�;N s;�
 (D).Then we obtain for the jth 
oordinate 
hangek"WjkÆj �Mj"; (3.17)whi
h yields by lemma 3.2 to k"�Wj�u kÆj�K(") � Mj"K(") : (3.18)We estimate the higher order term a in (3.12).kakÆj�K(") � k �I + " ��V Wj��1 �PNF (V + "Wj) + �Fj(V + "Wj)14



+�j(V + "Wj)� �j(V ) +A(V + "Wj)g� �AV + PNF (V ) + �Fj(V )� kÆj�K(")� k �I + " ��V Wj��1 �"AWj + PNF (V + "Wj)� PNF (V )+ �Fj(V + "Wj)� �Fj(V ) + �j(V + "Wj)� �j(V )�" ��V Wj �AV + PNF (V ) + �Fj(V )�	 kÆj�K(")We 
an estimate kAV k by 
NkV k, be
ause A = B �A with some bounded operator B andk �AjHNk � N . Using Neumann series and the mean value theorem we havekakÆj�K(") � 1Xk=0 k" ��V WjkkÆj�K(")�k"WjkÆj �
N + k ��V PNFkÆj�K(")+k ��V �FjkÆj�K(") + k ��V �jkÆj�K(")�+k" ��V WjkÆj�K(") �
NkV kÆj + kPNFkÆj + k �FjkÆj ��Applying the Cau
hy lemma giveskakÆj�K(") � 2�"Mj �
N + B1K(") + 2B1K(")�+ Mj"K(") [
NM +B1 + 2B1℄� ;where M is the radius of DN , see 3.2. Using N1+�" � 1, whi
h is equivalent to N � " �11+� ,and setting K(") = ~K" �1+� (3.19)we obtain kakÆj�K(") �Mj �2"" �11+� + 6 B1~K" �11+� + 2M~K + 6 B1~K" �11+� � � 14Mjfor ~K large enough. Therefore k�j+1kÆj+1 < Mj2 =Mj+1and k �Fj+1 � �FjkÆj+1 < Mj4 :Hen
e k �Fj+1kÆj+1 � k �F0kÆj+1 + jXk=0 k �Fk+1 � �FkkÆj+1� 14 jXk=0Mk +B2"p � 12B2"p +B2"p � B1 (3.20)for "0 small enough. Thus the indu
tive statements (3.15) and (3.16) are satis�ed for j + 1for su
h a "0 and the above 
hoi
e of K("). So we 
an 
arry out the 
oordinate 
hanges aslong as NÆr (DN ) 6= ;. More pre
isely, for Ær = Æ � rK(") � Æ=2 we needr = Æ2K(") = Æ2 ~K" �1+� = Æ2 ~K" �1+�15



Letting �� = �r(")(V; t" ; ";N(")) and �F� = �Fr(")(V; ";N(")) we get estimates for Gs�-normsuniform in "! 0; N(")!1, as N s;�Æ=2(DN ) � Dr(")N :k��kGs�;N s;�Æ=2 (DN ) < 2�rB2"p < 
2"p exp(�
1"� �1+� ); (3.21)k �F�kGs�;N s;�Æ=2 (DN ) < C"p: (3.22)Applying the Cau
hy estimate again, also gives estimates on the derivatives:kDU��kGs�;N s;�Æ=4 (DN ) < C exp(�
1"� �1+� ); (3.23)kDU �F�kGs�;N s;�Æ=2 (DN ) < C"p: (3.24)Step 2: Transformation of the full systema) Formal TransformationNext we deal with the full in�nite dimensional system. We letU = V + "W (PNV; t" ; ";N);whi
h means (I�PN )U = (I�PN )V asW 2 HN , i.e. the other modes stay un
hanged. HereN = N(") is 
hosen maximally su
h that N1+�" � 1 holds. Thus in the new 
oordinates weget, when suppressing the arguments t" and " of W_V + " ��PNV W (PNV ) _V + ��� W (PNV )= A(V + "W (PNV )) + F (V + "W (PNV )) + "pG(V + "W (PNV ); t" ; "):Solving for _V gives_V = �I + " ��PNV W (PNV )��1 nA(V + "W (PNV )) + F (V + "W (PNV ))+"pG(V + "W (PNV ); t" ; ")� ��� W (PNV; t" ; ")o:We split Gs� into the Galerkin approximation spa
e HN and its Gs� orthogonal 
omplementH?N . By using �I + " ��PNV W (PNV )��1jH?N = IjH?Nwe obtain_V = (I � PN )�AV + F (V + "W (PNV )) + "pG(V + "W (PNV ); t" ; ")�+PN �I + " ��PNV PNW (PNV )��1 PNnA(V + "W (PNV ))+F (V + "W (PNV )) + "pG(V + "W (PNV ); t" ; ")� ��� PNW (V; t" ; ")o= (I � PN )�AV + F (V + "W (PNV )) + "pG(V + "W (PNV ); t" ; ")�16



+PN �AV + F (V ) + �F�(V; ";N) + ��(V; t" ; ";N)�+PN �I + " ��PNV W (PNV )��1 PNnF (V + "W (PNV ))+"pG(V + "W (PNV ); t" ; ")� F (PNV + "W (PNV ))�"pG(PNV + "W (PNV ); t" ; ")o:Thus we have an equation as in (1.5)_V = AV + F (V ) + �F (V; ") + �(V; t" ; ") (3.25)where we group the terms in the following way�F (V; ") = �F�(V; ") + hb1(V; :; ";N("))i (3.26)�(V; t" ; ") = ��(V; t" ; ";N(")) + b(V; t" ; ";N("))� hb1(V; :; ";N("))i; (3.27)with an additional 
orre
tion term b = b1+ b2. The in�nite-dimensional 
orre
tion b1 of theerror in the higher Galerkin modes (where �A has eigenvalues of modulus greater than N)o

urs as these modes were negle
ted in the 
oordinate transformation. We haveb1(V; t" ; ";N("))= (I � PN)�F (V + "W (PNV ))� F (V ) + "pG(V + "PNW (V ); t" ; ")� : (3.28)We get also a 
orre
tion b2 in the �nite dimensional Galerkin spa
e, as there is an error inthe lower modes due to the negle
ted in
uen
e of the higher Galerkin modes to the lowerones. It is given byb2(V; t" ; ";N("))= �I + " ��V W (PNV )��1 PN �F (V + "W (PNV ))� F (PNV + "W (PNV ))+"pG(V + "W (PNV ); t" ; ")� "pG(PNV + "W (PNV ); t" ; ")� : (3.29)b) Estimating the full systemTo prove the estimates (3.5, 3.6, 3.7, 3.8) we will show �rst, that bounded solutions of thetransformed equation (3.25) are Gevrey regular. Then the additional terms 
an be estimatedvery easily using the following observation:We use only that V (t) is uniformly bounded in the Gevrey norm Gs� , this is the reasons,why remark 3.1 holds. When we measure the di�eren
e between V and its proje
tion to HNthen we get an exponential estimate:jV (t)� PNV (t)jX � jV (t)jGs� exp (��N) : (3.30)For solutions V (:) in the attra
tor of (1.4), this holds dire
tly by proposition 2.1. Aspointed out in remark 1.1, we do not need to assume that V (:) solves the parti
ular equa-tion, we are transforming, solutions of any other equation, whi
h ful�lls the assumptions ofproposition 2.1 gives the needed uniform boundedness of the Gevrey norms.17



To show it for the transformed equation, we �rst have to 
he
k the assumptions of theregularity proposition 2.1 for the transformed nonlinearity �F (:)+�(:; t" ; ";N)+b1(:; t" ; ";N)+b2(:; t" ; ";N) for �xed N; ". Then we 
an use (3.30) to estimate b1 and b2. The property(H.1) for V (:) holds by assumption. It remains to 
he
k (H.4).Consider the nonlinearity �F�(:; ";N) + ��(:; t" ; ";N), whi
h was de�ned by the �nitedimensional part on DN = HN \ BGs� (M), a ball of radius M = 2R + 1. By (3.21) and(3.22) we have the existen
e of majorating fun
tions as; bs independent of �. The existen
eof 
s;� follows from (3.23,3.24). The di�erentiability and 
ontinuity 
omes from the fa
t, thatthey hold for the original equation and the transformation is analyti
 in U and 
ontinuousin �. It remains to show the properties forF (:+ "W (PN :)); G(:+ "PNW (:); t" ; ") : BGs� (2R+ 1)! Gs� :The transformation V + "W (V ) is given by the su

essive 
oordinate 
hanges Vj = Vj+1 +"Wj+1(Vj+1). Using (3.17, 3.18), V +"W (V ) is a near-identity and di�erentiable 
oordinate
hange uniformly for every Gs� norm. The mapping�I + " ��V PNW (V )��1 PNo

urring in b2 is near to the identity by (3.18). Thus the estimates on F and G and theirderivatives hold in a straight forward way for b1 and b2 and their derivatives too. Thedi�erentiability and 
ontinuity are preserved by the transformation. Thus the assumption(H.4) of proposition 2.1 holds too, i.e. proposition 2.1 is appli
able to the solution V of(3.25).Hen
e (3.25) has Gevrey regular solutions. We 
an estimate j�(V (t); t" ; ")jX and j �F (V (t); ")jX .We start with �F (:; ") = �F�(:; ";N) + hb1(:; :; ";N) + b2(:; :; ";N)i. For the �nite dimensionalpart we have j �F�(V; ";N)jX � 
3"p by (3.22) for V 2 Xbounded. Estimating hb1i we obtainfor V 2 X = Gs0 bounded:jhb1(V; :; ";N)ijX� j(I � PN )�F (V + "W (PNV ))� F (V ) + "pG(V + "PNW (V ); t" ; ")� jX� supU=V+rW (PNV );r2[0;"℄ jF 0(U)jL(X;X)j"W (PNV )jX + "pB1 � C"p (3.31)be
ause j"W (PNV )jX � C"p+1.Furthermore we have kDU (hb1i)kL(X;X) � C"p when " ! 0 for U 2 X bounded, as Fand G are C1 in U . This gives together with (3.24) the estimate (3.8).Next we need a slightly more 
areful analysis for the nonautonomous part:j�jX = j�� + b1 + b2 � hb1ijX :For the �rst part we have by (3.21):j��(V; t" ; ";N)jX � 
2"p exp(�
1"� �1+� )For b1�hb1i we use the same analysis as for hb1i above, ex
ept we also note that V is boundedin the Gevrey norm Gs� . Hen
e b1(V ) 2 Gs� and thus with K = fV + r"W (PNV ); r 2 [0; 1℄gjb1(V; t" ; ";N)� hb1(V; :; ";N)ijX � 2j(I � PN )fF (V + "W (PNV ))18



�F (V (t)) + "pG(V + "W (PNV ); t" ; ")gjX� � supU2K jF 0(U)jL(Gs�;Gs�)j"W (PNV )jGs� + "pB1�� exp (��j�N+1j)� C"p exp (��N) : (3.32)For b2(V ), whi
h was 
reated by the Galerkin approximation in the �nite dimensional part,we obtain an exponential estimate for V 2 Gs� . For V 2 Gs� de�ne the line segment KV =frV + (1� r)PNV + "W (PNV )jr 2 [0; 1℄g, we then obtainjb2(V; :; ";N)jX� j �I + " ��PNV W (PNV )��1 PN �F (V + "W (PNV ))� F (PNV + "W (PNV ))+"pG(V + "W (PNV ); t" ; ")� "pG(PNV + "W (PNV ); t" ; ")� jX� 2( supU2KV jF 0(U)jL(X;X)jV (t)� PNV (t)jX+ supU2KV jG0(U(t))jL(X;X)jV � PNV jX )� CjV � PNV jX � C exp (��N) ; (3.33)where we used (3.30). As above we also obtain kDU (b1�hb1i+ b2)(V )jL(X;X) ! 0 for "! 0and V 2 Gs� for � > 0, as F;G are C1. This gives, together with (3.23), the estimate (3.7).Step 3: Combining the exponential estimatesWe now balan
e the exponential estimates of Step 1 and Step 2 using the freedom we stillhave in 
hoosing � in (3.9). Using that N is maximal su
h that N � " �1(1+�) , the estimates(3.32, 3.33) 
an be expressed in ". Then we 
an balan
e the two exponential estimates ofthe di�erent parts of �, the exponent � is then �R given by proposition 2.1.exp(�
1"� �1+� ) from (3.21)exp(��R"� 11+� ) from (3.32, 3.33)The best exponential estimate is obtained when 
hoosing � = 1. Then the estimates are oforder exp(�
"� 12 ) and N(") = O("� 12 ). This gives the estimates (3.5,3.6). It just remainsto 
he
k the boundedness of �F and �. The transformed nonlinearities �F and � are boundedon X , sin
e all estimates hold for Gs� , � � 0 and thus also for X = Gs0 . The estimates in(3.31,3.32, 3.33) do not yield exponential smallness for the 
ase � = 0, but they give thenstill boundedness. The �nite dimensional part is still exponentially small.Di�erentiability, in fa
t analyti
ity of the transformed nonlinearities and of W withrespe
t to V in some ball of X resp. Gs� follows with the Cau
hy estimate as W , �F and �are bounded by the above analysis on a 
omplex extension of su
h balls in X resp. Gs� . 2Remark 3.3 If G is smooth in ", then the 
onstru
tion 
an be modi�ed su
h that �F (V; ")and �(V; t" ; ") are smooth in ". This 
an be done in the same way as in [Mat01, remark9℄.Proof of theorem 1: It remains to 
he
k (H.4) and (H.5), su
h that theorem 2 then impliestheorem 1. By 
orollary 2.4, the assumptions (H.3a)/(H.3b) imply (H.4). To 
he
k (H.5),we restri
t and proje
t F and G to HN . Then F;G are given by a 
onvergent power series19



in the 
oeÆ
ients of the eigenfun
tion expansion, see [Mat01, remark 6℄. This power series
onverges for the whole HN . The estimates on the 
omplex extension follow from lemma2.2 and lemma 2.3 respe
tively.Thus the assumptions for theorem 1 imply those of theorem 2 and the proof is 
omplete.24 Equilibrium solutionsWe now apply theorem 1 and 2 to des
ribe quantitatively the e�e
t of the nonautonomousfor
ing on spe
ial solutions. Our main interest here is on equilibrium solutions of the original{ unfor
ed { equation.Other spe
ial solutions, to be analysed in a forth-
oming paper, whi
h 
an be understoodas fronts of velo
ity 0 for paraboli
 equations as in (1.2)u� = �(t;x)u+ f(u; �)on a spa
e-domain (t; x) 2 IR�
 with time � and a parameter � 2 IR. Typi
ally those pinnedfronts exist in the homogenouos 
ase only for spe
ial parameter values �0, whereas addingnonhomogenouos perturbation "g(u; t) will pin fronts in a whole interval I of parameters.Using theorem 1 and theorem 2 it is possible to show, that the length jI j of the pinninginterval is exponentially small for rapid for
ing terms "g(u; t=").Here we study equilibria, equilibria are solutions u(t; x) = w(x), whi
h do not depend ont, i.e. ddtu(t; x) � 0, i.e. D�xw + f(w; 0;rxw) = 0. We will 
onsider hyperboli
 equilibria.As in dynami
al systems the equilibrium w(x) is 
alled hyperboli
, if the linearised operatorL = A+DF (w;rxw; 0)has no spe
trum in a strip near the imaginary axis:spe
(L) \ fzjjRe(z)j < Æg = ;:For another de�nition of hyperboli
 equilibria of ellipti
 equations on 
ylinders, see [FSV99,se
. 5℄. Note that when we impose periodi
 boundary 
onditions, that there is a translationsymmetry in x, 
reating zero eigenvalues. Adding a slow spatial inhomogeneity h in anappropriate Gevrey spa
e to break this symmetry is allowed by (H.4), su
h that we 
onsider�2t u+D�xu = f(u; ut;rxu) + "pg(u; ut;rxu; t" ; ") + h(x); (4.1)and the whole theory still applies. It is standard, that hyperboli
 equilibria persist undersmall autonomous perturbations and that they also persist as solutions, whi
h are "-periodi
in t, under rapid nonautonomous periodi
 for
ing. The distan
e between original and theperturbation is in the order of the perturbation.The new result is, that the periodi
 solutions, whi
h are 
reated by rapid for
ing ofthe hyperboli
 equilibria are in fa
t exponentially 
lose to hyperboli
 equilibria of the ho-mogenized equation. Thus the modulation is only exponentially small in the transformedphase-spa
e.Proposition 4.1 Let the assumptions of theorem 1 hold. Fix some perturbation order p > 0.Furthermore assume that the original unfor
ed equation (1.4 with " = 0) has a hyperboli
equilibrium p0. Then the for
ed solution has a bounded solution p"(t; x), whi
h is periodi
 in20



t with period ". The trun
ated equation (1.8) has a hyperboli
 equilibrium solution �p". Forthese the following holds:jp0 � �p"jX � C"p (4.2)jp"(t)� �p"jX � C exp(�C1"� 12 ); for all t 2 IR (4.3)i.e. the periodi
 solution 
reated by the rapid inhomogeneity is exponentially 
lose to theequilibrium of the homogenised equation.Proof: To prove the persisten
e of equilibria and the existen
e of periodi
 solutions weapply some impli
it fun
tions argument, similar to Lord et al. in [LPSS00℄. The followingversion of Bana
h's �xed point theorem is used, see [LPSS00℄.Lemma 4.2 Suppose Y is a Bana
h spa
e and H : Y ! ~Y is C1. Assume, that there existsa bounded linear and invertible operator L : Y ! ~Y , an element U0 2 Y and numbers � > 0and 0 < � < 1 su
h that1. jI � L�1DH(U)jL(Y;Y ) � � for all U 2 B�(U0)2. jL�1H(U0)jY � (1� �)�There exists then a unique point U� 2 B�(U0) with H(U�) = 0 andjU0 � U�jY � (1� �)�1jL�1H(U0)jYFirst we show the persisten
e of hyperboli
 equilibria �p". Consider(A+DUF (p0))�1(A(p0 + U) + F (p0 + U) + �F (p0 + U; "))= U + (A+DUF (p0))�1(F (p0 + U)� F (p0)�DUF (p0)U + �F (p0 + U; "))=: H"(U)To �nd equilibria, we look for zeros near U = 0. The map H is smooth in U as a mapBX(R)! X and by (3.6)jH"(0)j � j(A+DUF (p0))�1 �F (p0; ")j � C"p:Furthermore we havekDUH"(U)� Ik= k(A+DUF (p0))�1(DUF (p0 + U)�DUF (p0) +DU �F (p0 + U; "))k � 12for all U in a small enough ball in X of radius �, uniformly for 0 � " � "0 by (3.8). Hen
ethere is by lemma 4.2 a unique zero �p" 2 B�(U0) � X of H" withj�p" � p0j � C"pThe linearisation A+DUF (�p")+DU �F (�p"; ") is hyperboli
 for " small enough, sin
e F is C1and DU �F is small. Furthermore �p" is as smooth in " as �F (U; ") is.To �nd periodi
 solutions 
onsiderH(U) = Ut ��AU + F (U) + �F (U; ") + �(U; t" ; ")� (4.4)21



as an operator on some subspa
e of C0per([0; T ℄; X), the spa
e of periodi
 
ontinuous fun
tionson the �nite interval (0; T ) with values in X . Using an impli
it fun
tion argument, we willshow, that there exists a unique solution in this subspa
e near the equilibrium p0, whi
hwill be the desired "-periodi
 solution, when letting T = k", k 2 IN.Let ~X = Hr(
; IRn) � Hr�1(
; IRn) with r 2 IR and r + 1 > s > r � 0 and with the
onvention H0 = L2. Then on ~X the domain of A is given by D(A ~X) = Hr+1(
; IRn) �Hr(
; IRn). The Sobolev exponents s > r are 
hosen su
h that F : ~X ! ~X is di�erentiable.This is possible for our the lo
al nonlinearity in (4.1) by lemma 2.3 and the proof of 
orollary2.4. We 
onsider the following linear operator L0 related to (4.4). We will show, that L0 isinvertible and whi
h will imply by Fredholm arguments, that DH(p0) is also invertible. LetP0 denote the proje
tion to the n-dimensional kernel of A, spanned by v0;l (see (2.2)).L0(U) = Ut � (A+ P0)UL0 : Y ! ~YWhere we use the following fun
tion spa
es ~Y = C0;
per([0; T ℄; ~X), the spa
e of periodi
 H�older
ontinuous fun
tions with normkUk ~Y = supt2[0;T ℄ jU(t)j ~X + sup�;t2[0;T ℄ jU(t)� U(�)j ~Xjt� � j
and Y = C1per([0; T ℄; ~X) \ C0per([0; T ℄; D(A)) \ fU jUt � (A+ P0)U 2 ~Y g with normkUkY = supt2[0;T ℄(jU(t)j ~X + jU 0(t)jL( ~X; ~X)) + supt2[0;T ℄ jU(t)jD(A) + kUt � (A+ P0)Uk ~Y :Then L0 is invertible. As mentioned in the beginning of se
tion 2, A� generates an analyti
semigroup on P�X for negative times and A+ generates an analyti
 semigroup on P+X forpositive times. The latter is not 
hanged by the �nite dimensional perturbation to A++P0,whi
h still leaves P+X invariant.For f 2 ~Y , the inverse is given byU(t) = Z t0 exp �(A+ + P0)(t� �)�P+f(�)d� + exp �(A+ + P0)t�P+U(0)+ Z Tt exp �A�(� � T )�P�f(�)d� + exp �A�(t� T )�P�U(0);where the U(0) and U(T ) are 
hosen to ful�l the periodi
 boundary 
onditions U(0) = U(T )on (0; T ):P�U(0) = �I � exp �A�(�T )���1 Z T0 exp �A�(� � T )�P�f(�)d�P+U(0) = �I � exp �(A+ + P0)T ���1 Z T0 exp �(A+ + P0)(T � �)�P+f(�)d�:From [Hen83, lemma 3.5.1℄ we then have, that U is even di�erentiable with values insome fra
tional power spa
e, whi
h 
an be identi�ed with the original X , if the H�olderexponent 
 is large enough, i.e. for 
 > s� r, then U 2 C1((0; T ); X). Next we 
onsiderL1 : Y ! ~YL1(U) = Ut �AU �DUF (p0)U22



Again, as U 2 Y implies U 2 C1per([0; T ℄; X), we have then DUF (p0)U 2 C1per([0; T ℄; X) andthus L1(U) 2 ~Y . As C1per([0; T ℄; X) embeds 
ompa
tly into ~Y = C0;
([0; T ℄; ~X), we havethat DUF (p0) : Y ! ~Y is a 
ompa
t operator. Then L1 = L0 � P0 +DUF (p0) is Fredholmof index 0: As L0 is invertible, it is Fredholm of index 0 and Fredholm properties persistunder the 
ompa
t perturbation �P0 +DUF (p0). Thus L1 is Fredholm of index 0. Due tothe hyperboli
ity of the equilibrium p0, the kernel of L1 is trivial, thus L1 is invertible.Next we apply lemma 4.2 to H given in (4.4) and L given byLU = L1U = Ut �AU �DUF (p0)U:ThenjI � L�1DH(U)jL(Y;Y ) = jL�1(DUF (U)�DUF (p0) +DU ( �F (U; ") + �(U; :; "))j � 12 (4.5)holds for U 2 B�(�p") � B2�(p0) for some �xed small � and for 0 < " < "0, as F is C1 andjDU �F (U; ")jL(X;X) 2 o(1) by (3.8). For jDU�(U; ")j we need a more 
areful analysis: By(3.27)�(U; t" ; ") = ��(U; t" ; ";N(")) + b1(U; t" ; ";N("))� hb1(U; :; ";N("))i+ b2(U; t" ; ";N("))By the analysis in se
tion 3,jDU (��(V; t" ; ";N(")) + b1(V; t" ; ";N("))� hb1(V; :; ";N("))i)jL(X;X) � C"pfor U 2 BX(R). Now 
onsiderDU b2, where in general jDUb2(U; t" ; ";N("))jL(X;X) is of orderO(1) for U 2 BX(R). We will use here the regularising property of L�1. As the Sobolevexponent r in the de�nition of ~X is 
hosen su
h that F : ~X ! ~X is di�erentiable we 
anestimate as follows, suppressing some arguments for notational 
onvenien
e.jDU b2(U)jL(X; ~X)= jDUf�I + " ��PNUW (PNU)��1 PN �F (U + "W (PNU))� F (PNU + "W (PNU))+"pG(U + "W (PNU); t" ; ")� "pG(PNU + "W (PNU); t" ; ")�gjL(X; ~X)� CjDF (U + "W (PNU))(id+ " ��PNUW (PNU))�DF (PNU + "W (PNU))(PN + " ��PNUW (PNU)jL(X; ~X) + C"p� C"p + CjDF (U + "W (PNU))(I � PN )jL(X; ~X)+j[DF (U + "W (PNU))�DF (PNU + "W (PNU))℄[PN + " ��PNUW (PNU)℄jL(X; ~X)� C"p + CNr�s + C�;as j(I � PN )jL(X; ~X) � CNr�s and jPNU � U jX � C� uniformly in B�(�p") for N(") � N0large enough. Choosing � small enough and using L�1 : ~Y ! Y and D(A ~X ) � X 
ompletesthe estimate (4.5).Furthermore jL�1H(�p")jY = jL�1�(�p"; :; "))jY � C exp�� 
p"� ;23



by (1.6). Even if �p" is in general not in the attra
tor of the equation (1.5), the estimatesas in (1.6) still hold, as �p"(t) is Gevrey regular, see remark 3.1. Thus by lemma 4.2, thereexists a unique solution ~U" of H(U) = 0. All this is uniform in T , so when we are 
hangingT slightly, su
h that T = k" for some k 2 IN, then the estimates do not 
hange. Then ~U"is in fa
t periodi
 of period ". Be
ause otherwise the shifted solution ~U(: + ") would beanother solution of H near p0, whi
h 
ontradi
ts uniqueness. Thus ~U" 
an be identi�ed witha periodi
 solution p" with k�p" � p"kBC(IR;X) � C exp�� 
p"�This 
ompletes the proof of the proposition. 2A
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