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Abstract

We consider systems of semilinear elliptic equations on infinite cylinders with a non-
linear rapid periodic inhomogeneity in the unbounded direction. We transform the
equation, such that the inhomogeneous term is exponentially small in the period of the
inhomogeneity for bounded solutions. The results can be used to show that equilib-
rium solutions persist as periodic solutions with exponentially small modulation. The
analytic tools of the paper include the dynamical systems approach to elliptic equa-
tions, averaging of exponential order for ordinary differential equations and extreme
regularity (Gevrey classes).

1 Introduction and Main Results

Homogenisation theory is a major part of the analysis of partial differential equations with
rapidly oscillating coefficients in time and/or space, which aims at eliminating these depen-
dencies. Often effective or homogenized equations are derived which describe the model up
to a certain finite order. When looking for higher order expansions as in e.g. [BaPa89] for
linear elliptic problems, we find that the correctors must satisfy partial differential equations
of higher and higher order, which are often not well-posed. As a general references for results
and methods of homogenisation theory see e.g. [BPS99, BJP99, JKO94]. In this paper we
follow a different approach. The homogenisation problem is transformed such that the terms
in the equations, which are still rapidly oscillating, are beyond any finite order and are in
fact exponentially small.

As a particular example we investigate periodic homogenisation of systems of semilinear
elliptic equations, which are inhomogeneous in an unbounded direction. Given

t
8fu+DAzu = f(u,ut,Vmu)+5pg(u,ut,Vzu,g,s) (L.1)

for some order p > 0, v € IR” in a unbounded cylinder (¢,z) € IR x Q with cross-section
Q = [0, L]? and periodic boundary conditions in z. The nonlinearity g is periodic in 6 = £.
These equations arise, for example, when analysing the influence of rapid inhomogeneities
on travelling waves of reaction-diffusion equations

Oru = At zu + f(u), (1.2)



for a survey on travelling waves and their applications see [VVV94].

The equation (1.1) is analysed by combining four main steps. First we use the spatial-
dynamics approach to elliptic with an unbounded direction. The unbounded direction is
considered as ‘time’ and an (ill-posed) evolution problem is then studied. Then we use special
averaging techniques for this evolution problem, which were first developped in [Mat01] for
parabolic equations with rapid time-dependence. As a second step we modify averaging
results of exponential order for bounded ordinary differential equations by Neishtadt [Nei84],
such that they can be applied to a finite dimensional Galerkin approximation of evolution
equation, where the norm of the vector field becomes unbounded with the dimension of the
Galerkin approximation k. This will give a homogenised equation, where the inhomogeneous
remainder is exponentially small in some algebraic expression of . The third step deals
with the infinite-dimensional part, which is not considered in the Galerkin approximation.
This will then be estimated using the extreme regularity of the solutions. The remaining
Galerkin modes decay exponentially in the dimension k of the our approximation space.
Balancing both exponential estimates together for an appropriate coupling of € and k gives
an exponential error estimate. For solutions uniformly bounded on IR x Q, we will show that

__c

the nonautonomous part is of exponential order O(exp( \/E)) after the transformation.

To formulate our main results, we are rewriting the elliptic system (1.1) of n second-order
equations as a system of 2n first-order equations. By letting

U= ( v ) (1.3)

we have t
Us =AU+ F(U) +€"G(U, -,¢) (L4)
with
I U
AU = (—DAz 0>(ut>
0
F(U) - (f(u,ut,vzu) )
¢ 0
6059 = (Bt )

Then it can be considered as a dynamical system. Dynamical systems methods have
shown to be very powerful in understanding elliptic equations in infinite cylinders, see e.g.
[Kir82, Mie94, VZ96, FSV99, VZ99]. The unbounded direction ¢ is then called ‘time’. We
choose then as phase-space some Sobolev space on the cross-section . We let U € X =
H:,,(Q,R") x H3,1(Q,IR™), for some s > 0. All theorems hold, if we fix s > % + 1.
We consider solutions of (1.4) resp. (1.1) which are uniformly bounded on IR x Q in the

following sense:

u € BC°(R,H;.,.(Q,R")NC(R,HZ, (©2,IR"))

u; € BCIR, H;‘;}(Q, IR™)) N CO(IR, L2(£2, IR™)) (H.1)

uy € BCO(IR,L?(Q,IR™)),

and (1.1) holds weakly in the cross section for all ¢t. Here

BC(R,Y) = {u:IR — Y]u continuous, sup |u(t)|y < oo},
teR
lullsery)y = suplu(t)ly,
teER



we try to stick to the convention that ||.|| denote a sup-norm, while |.| is the norm in a
general Banach space. As we assume smoothness of f, it follows that every weak solution
is strong. The choice of the differentiability order s can be relaxed depending on the form
of the nonlinearities. The set of bounded solutions, satisfying (H.1) is often also called
the (trajectory) attractor A of the equation. The dynamics are by translation of the the
trajectories along the ‘time’ direction, for a more detailed explanation see e.g. [FSV99]. In
particular we consider solutions, which are bounded by a constant R.
Ag :={u: IR = X,u solves (1.4) and fulfills (H.1),||u||pc(r x) < R}
The corresponding attractors of transformed equations will be denoted by A and Ag.
We make the following assumptions on f and g

g(u,8,¢) is periodic in 0 of period 1 and continuous with respect to 6 and ¢ (H.2)
When f, g do not depend on derivatives, we assume
f(),9(.,8,€) : IR" — IR™ are entire for all §,c and s > £. (H.3a)

If the nonlinearities involve first order derivatives with respect to ¢ or z, i.e. they have the
general form f(u,us, Vyu) and g(u, ug, Vyu, 0, €), we assume instead

()90, 0,€) s R™ x IR x R™® — IR"™ are entire for all #, and s > 241
(H.3b)

Our main result is the following.

Theorem 1 Assume the hypothesis (H.2) and depending on the form of the nonlinearities
(H.3a) or (H.3b) for the equation (1.4). Fiz a perturbation order p > 0 and some bound
R > 0.

Then there exist eg > 0, C1,C2,C3 > 0 and a t-periodic transformation of (1.4) on a
ball Bx(R) for 0 <e < &g to

V= AV + F(V) + F(V,e) +a(V, 2,2, (15)

where F,a are differentiable for V. € Bx(R), nonlinear and nonlocal in the cross-section,
but local in t. When considering bounded solutions V(.) € BC(IR, X) of the original equation
(1.4) - i.e. V(.) is in the attractor Ar - or bounded solutions of (1.5) satisfying (H.1) -
i.e. V(.) is in an attractor Ag - then the influence of the fast scale on V (.) is exponentially
small, uniformly on balls in BC(IR, X):

sup  [la(V(.),./e,8)llcrx) < Ch exp(—Coe ™ %) (1.6)
V(.)GARUAR

The correction term can be estimated on Bx(R) by

sup  [[F(V(.),e)llBor x) < CseP. (1.7
V()EBx(R)

Remark 1.1 The estimate (1.6), possibly with changed constants C1,Ca, also hold for
V(.) € BC(R, X), which are bounded solutions of any system of elliptic equations of type
(1.4), which fulfills the regularity proposition 2.1.



This transformation can be used to understand the influence of the rapid forcing on
solutions. Our main interest will be here on ‘equilibrium’ solutions, which do not depend
on t for € = 0, see section 4. We will compare the solutions of the truncated equation

Vi = AV + F(V) + F(Ve) (1.8)

with the solutions of (1.4) and (1.5). We will see in that ‘equilibrium’ solutions persist under
the forcing as solutions periodic in ¢, which are exponentially close to equilibria of (1.8). In
a forth-coming paper the influence on localised solutions and their relation to pinning effects
in (1.2) will be also analysed.

The rest of paper is organised as follows. In section 2 we introduce Gevrey classes as a
tool for describing extreme regularity of the solutions of (1.4), (1.5) and (1.8). The bulk part
of the proof of theorem 1 is given in section 3, where a version with more general assumptions
(H.4) and (H.5) is proved. The influence of rapid forcing on equilibrium solutions is analysed
in section 4.

2 (Gevrey classes

An important tool is the extremely high regularity of bounded solutions of (1.1). They are
real analytic in the cross-section and are in special Gevrey classes. To define these spaces,
we collect some properties of the differential operator A. As above, A is defined by

_ 0 I U1
av=( _pa, o) ()

with D = diag(di,...,d,). For comparison we also consider the differential operator A,
where all diagonal entries in D are equal:

Trr 0 I (5%
= (Ll $) (),

where d,;;, = min(dy, ..., d,).

The operator A has both infinitely many positive and negative eigenvalues. We describe
here the situation for periodic boundary conditions. There are strictly positive eigenvalues
Aig = |k|V/d 2 for k € Z*\{0},1 € {1,...,n} with eigenfunctions

_ erexp (122k - z)
vkt (7) = ( |k|v/d2Ee exp (i25k-z) )’ (2.2)

where ¢; is the lth unit vector in IR". The negative eigenvalues are up; = —|k|\/d_l2f” for
ke z%le {1,...,d} with eigenfunctions

_ erexp (i22k - )
’wk,l(y) - ( _|k|\/$2f7rel exp (lzTﬂ—k . J?) . (23)

We denote by A, the part of A with negative eigenvalues, which generates an analytic
semigroup for positive times:

A+Uk,l =0
Ajwi; = Awgg = g wy,.



In the same way, A_ is the part of A, which generates an analytic semigroup for negative
times

A v = Avgy = A w0
A,wk,l = 0.

We will also need the projections P, and P_:

P+’Uk71 = 0 P+7-Uk7l = Wk,
P oy = vy P_wy; = 0,
with A = APy and A_ = AP_. Finally define |A| = —A; + A_. The same analysis

holds of course for the special case of a differential operator like A, with the same coefficient
dmin in all n components. The spaces, which we will use, are defined as the domain of the
exponential of the operator |A|. The Gevrey spaces are defined by

G5 = DAl exp(o|A])).
The graph norm can be expressed using the eigenfunction expansion. Letting

U = E Qg1 Vi1 + br Wiy
ke Zdi=1,..n

then

|U

2w 2w
Ge = > (el +1bea)(1 + \/d_lf|/’f|)2s exp (20|k|\/ dmmf) - (249)

kezZdi=1,...n

Note that G5 = D(|A|°) = X.

As we have to deal with nonlocal operators later in the proof anyway, we will reformulate
the assumptions (H.3a) and (H.3b) to include a wider class of nonlinearities. Denoting the
ball By (M) = {u € Y||u|y < M} for some Banach space Y, we will assume

For some fixed R > 0,00 > 0,59 > 0 the following assumptions
hold uniformly in 0 < e <egg and 0 < o < 09

F(.),G(.,0,¢) : Bgs (2R + 1) — G} are differentiable
G(.,.,€) : Bgs (2R + 1) x R — G7 is continuous

There exist non-decreasing functions as, bs : [0,2R + 1] — IR, (H.4)
independent of £,0 and 0 < o < 0y :
IF(U)lg: < as(|Ulg:)
|G(U7075) gs < bs(|U gf,)

There exists a non-decreasing function ¢, : [0,2R + 1] — IR independent of ¢, 6
|DuF(U)l|L(gs,05) + [PuG(U,0,€)|L(g:,95) < €5,0(|U]gs)

The hypothesis (H.4) holds for all functions fulfilling (H.2) and one of (H.3a) or (H.3b).
But also functions nonlocal in the cross-section like F'(u)(z) = [, u dz and spatially nonho-
mogenuous terms like h(z), h(.) € G5 are included.

The main regularity result is the following.



Proposition 2.1 Consider bounded solution of (1.4) fulfilling (H.1) and (H.4) (or for local
nonlinearities (H.1), (H.2) and depending on the particular form (H.3a) or (H.3b)). Then
for all R >0, there exists og > 0, such that for all U(.) with ||U(.)|llcr x) < R,

IUllBergs, ) =sup|U(t)lgs < 2R+1 (2.5)
R teR

holds.

This proposition and its proof use ideas from similar regularity results for parabolic

problems, which were analysed in [FoTe89, Pro91, TBDHT96, FeTi98]. We will show the
more general part of proposition 2.1 using (H.4). Finally we will show that the hypotheses
(H.2) and (H.3a/b) imply (H.4).
Proof: To establish the regularity result, we will use a Galerkin approximation by ordinary
differential equations. We will derive a priori estimates for solutions fulfilling (H.1). The
main idea here is to split the phase space in P, X and P_ X, where A generates regularising
semigroups for different time directions. These two subspaces are treated separately and we
get estimates for the Galerkin approximation depending on the time direction. To derive
estimates at ‘time’ T, we start at some earlier time 7° — 7" in the space Py X and use the
regularising of exp (A t) for positive times ¢, whereas we start in P_ X at some time 70 + T
and then go backwards with the regularising exp(A_t). These estimates do not depend on
Tp and thus we get uniform estimates on ||U||pc(r,gs)-

We will use a Galerkin approximation in forward time for P, X. In forward time A
generates an analytic semigroup on P, X. We restrict the Galerkin approximation in back-
ward time to P_X, where A_ generates an analytic semigroup in backward time. So with
PV denoting the projection to Hy, where

2
HN = {Span{ka,wa} ‘k € Zd,l = 1,.. Ny with |k‘|\/ dmmfﬂ- S N} . (2.6)

We obtain
d t
U = AUN+PNF(UN)+PNG(UN,E,5) (2.7)
Un(0) = PNU,. (2.8)

Considering the Py part only, we get
d
dt

where the nonlinearities also depend on the P_X part. Multiplying both sides with |A|* exp(¢]A|)

and taking the L?(Q,IR®")-scalar product with |A|® exp(t|A|)Uy (t) gives on P; X, where

4] = A, ]

t
Uy = AUy, + P PYF(Uy) + PyPYG(Un, -, 9),

_ d _
(142 exp(t2. ) U7 1Al expltl )T
= (|A+]° exp(t|AL)) AUy, |A1]" exp(t| A4 )UY)
_ t _
# (141 expUlAL (P, PV () + PLPYG(U, L ) 44 expltl AL )T )

where we dropped the explicit dependence of Uy on ¢. Thus

1d

s - 2
>q | A4 |° exp(t| AL UL |-



—(| A4 |" exp(t| AL ALUR, [ A4 | exp(t| AL )UY)
= —(JA"" exp(t{AL)UY, [A+ ] exp(t| AL NUR)

_ t _
(A4 exp(tl A4 (P PYF(Ux) + Py PNG(Ux, -, 0)), |44 | exp(tl A4 U

The first term on the right hand side minus the last term on the left hand side is positive
and can thus be dropped in an inequality: As |Ay| —|A4| = |4+ — A4 | is symmetric and
positive, we obtain

(144 exp(tl A4 DU, |4, | exp(t] A UF)
(A |? exp(tl AL | AL [Un, | A |? exp(tl A U)

_ _ 2
= |14+ = A BlA ) exp(t AL U] | >0

This yields

| &

1AL ]* exp(t] A+ )UF; (2.9)

2
22

N | =
U

t

_ t _
< (A4 exp(tlAL ) (P PYF(Ux) + P PYG (U, 2,2)), | A, |* expl(tl A, )U).

—~~

The left hand side |U(¢)

g; depends on ¢ both in U and in the norm. As

1d
2 dt

_ d
1441 exp(t A DTS 0)]3 = = (|0 B, ) [T50)g,

and by using the Cauchy-Schwarz inequality on the right hand side of (2.9), we can conclude

t
< |PLPNF(Uy)+ P PNG(Uy, = 9)lg;
as(|Unlg;) + bs(|Un|g;) (2.10)

d
- | UnOlg;

VAN

Thus we have a bound in Gevrey norms on Uﬁ(t) for t > 0 with increasing exponent, if we
also know, that Uy is bounded:

U (1)

g: < |Ux(0)

gf_) + bS(|UN

t
Gs +/ as(|[Un gﬂs_)dT. (2.11)
0

Due to continuous dependence on ¢ for the ordinary differential equation, we can assume,

that |Un(t)|g: is bounded on some interval [0, ], i.e. [Un(t)lg: < M = 2|Up|x + 2 with
|Un(TN) g, =M. Thus using (2.11) we have an estimate for ¢ € [0, Tn]

UX(B)lg; < [UR(0)]x + t(as(M) + bs(M)), (2.12)
with M = 2|Up|x 4+ 2 < 2R + 1. Assuming |U}; (t)|gs < M/2 we obtain a lower estimate for
Ty from

M/2 < |UN(Tn)lgs, < |Uolx + Tn(as(M) + by(M)).
Hence

1
a.2R+1) + b,(2R + 1)

Tn >T* = (2.13)

as long Uy (¢)

g: also remains bounded for ¢ € [0, T].



When considering negative times we get the same estimates for A_, only the time-
direction has to be changed. For t € [-T, 0] we obtain

[Un(#)

g+, < |Un(0)[x +[t|(as(M) + bs(M)), (2.14)

where Ty is as in (2.13) as long as |Uy(t)

Gi also remains bounded for ¢ € [T, 0].

We are aiming at uniform estimates on |UY () + UY(t)|g: for some o > 0. So consider
some fixed Ty, without restriction T, = 0. Then we start with the P, X part at some
negative time —7 < 0 and evolve forward, whereas we start with P_X at some positive
time T > 0 and evolve backwards. Both evolutions are regularising. Taking (2.12) and
(2.14) together gives

|Un(0)

g5 < 2(lUllBcor,x) + T (as(M) + bs(M))) (2.15)

as long |Ux (t)

gs < M/2 for t € [0,T] and |Uy ()
we obtain the same estimate, as

g, < M/2 for t € [-T,0]. But for these

[Un@)lg: < |Un(t)|gs fort €[0,T]

Ux®lgy, < |Un(t)lgg for t € [-T,0].
with T' < as(2R+1)+1—bs(2R+1)‘ Hence we get uniform estimates with M = (2||U||pco(r,x) +2)-
Thus |PNUp|gs = [UN(0)|gs < C, and PNUy converges in G for o < T, as G5 embeds

compactly in G, therefore Uy € GZ. Hence if we know, that there is a bounded solution
with U(Ty) = Uy, then Uy € G5. Taking these estimates at all times uniformly gives (2.5)

1Ullz=rg;,) < 2(IUllBeogr.x) + 0r (as(2R +1) +b5(2R + 1)) <2R + 1

where we let

R = @R+ 1) +b,2R+D) =

1 T*
5"
From (2.10) we get similar estimates on U (0) € L? (IR, GZ) and by [Tem77, ch.3, lemmal.2]
U is continuous in ¢ with values in G2, which proves proposition 2.1 for (H.4).O
To complete the proof of proposition 2.1, the main key is the next lemma, which will
close the remaining gap that the hypotheses (H.2) and (H.3a/b) imply (H.4). It also selects
our particular choice of Gevrey classes. The nonlinearities in (1.4) map these Gevrey classes
into themselves.

Lemma 2.2 Let f : IR"™ — IR™ be entire. Let U = ( Z

( f(Ou) ) € §G: and

) € G2 with s > £, then F(U) =

[F(U)

g: < (1+CHa(CslU

gs)

for some function a : RT — IR independent of .

Proof: Gevrey spaces for scalar problems are Banach algebras, see e.g. [FeTi98, lemma 1].
For our vector valued Gevrey classes, we consider the 2n-components separately. We define



the scalar Gevrey spaces G5 for scalar functions u(.) with u(z) = > ke za Uk exp (2Ek - z)
by

G
27
o= S @R ) e (20T )

keZi=1,..,n

{u € L2, R)|ju

s < oo}, with

|u

This gives G5 = (G5)" x (G5~1)" and U = (uq, ..., Un,v1,...,0,)T € GE with

uleéé forl=1,...,n
v,EQj*l fori=1,...,n

For the component functions u;,,u;, € G5 we have by [FeTi98, lemma 1] for s > ¢ , inde-
pendent of o:

|U'll 'ulz gj S CS|U’11 ulz Aj (2.16)

Gs

Then as f : IR® — IR" is entire, there exists a power series f(u) = Zjel,\,g ajul, with
aj € IR" and w/ = ui' - ... ul¥, converging for all u = (u,...,u,) € IR". Furthermore
a(r) = Y, arr” with @, = ZjelNg,|j|:k |aj|re is convergent for all r € IR with |f(u)| <

a(|ul).
To show F(U) € G2, we estimate a power series expansion of F' = (0, f)7 and pass to
the limit. In fact we even estimate (f,0)T by using (2.16)

N N
> (au7,0)" < Y lajlre |u
|51=0 gs |51=0
N .
< laolwe + Y lajlreCYIH U]
\J‘\—l
< (1+ct Z laj|rn Cy
|51=0
< (1+C7ha(Cs|U|gs)
To pass to the limit we see
N N ‘
Zaw < (1407 Y laglC¥U1gy — 0
: Gs |j|:0

for M, N — oco. Hence Ef}’lzo(ajuj, 0) = F(.) exists in G2 by the completeness of G5. The
peT(Q IR™) < BC°(Q,IR™)
for s > g. Furthermore the G norm is in the first n component stronger than the uniform

first part u of U = (u, u¢) is uniformly bounded for o > 0 asu €

convergence norm. Hence the analyticity of f(.) implies Zf}ﬂ:o aju/(.) = f(u(.)). Hence
(f(u(.)),0)" € G; and
gs <| ( (J; )

-1(3)

|F' g: < (14 C,Ha(C;

) (2.17)



The same argument holds for the time dependent g first for fixed ¢,6. By taking the
maximum, we have a uniform majorising function b for all £ in some compact interval and
for all times 6, using the continuity with respect to € and € in (H.2). Then the lemma holds
also in the time-dependent case.O

A similar lemma holds for nonlinearities involving first derivatives, where us = d;u;.

Lemma 2.3 Let f : R" X R" x R™® — IR" be entire. Let U = (u1,us) € G5 with s > 441,

then 0
FO) = ( fur,u2, Vyug) ) €9

|F(U)
for a : IRT = IR independent of o and s.
Proof: We first observe that (uz,0)T € G5! directly from the definition (2.4) with
|(uz,0)T g1 < |U|gs. Spatial derivatives of u; with respect to = give in the eigenfunc-
tion expansion Y aj g + brywy, at most a factor |k|, hence |(Vyu1,0)7|g:-1 < |Ulgs.
Using the proof of lemma 2.2, especially the last inequality in (2.17) with s — 1 instead of s,
then gives

with

gs < csa(Cs|U

gs)

(f(u1,u2, Vour),0)" € G571

Hence as
A(07 f(u17u2a Vzul))T = (f(u17u27 vﬂvul)’ O)T € g;*l

holds, then (0, f(u1,uz, V,u1))T € G5. By (2.17) we then have
|F(U) gs < (1+ C;l)a(CS|U gj—vaS|Vyul
csa(Cs|U

G;,Cs|u2 g;—l)

VAN

gs)

This proves the result 0.

Corollary 2.4 The assumption (H.2) together with one of the assumptions (H.3a) or (H.3b)
implies assumption (H.4).

Proof: For the assumption (H.3a) with s > g we can use lemma 2.2 to derive all as-
sumptions on F' = (0, f)T and G' = (0,9)T except the differentiability from G5 — G2 and
the boundedness of Dy F, DyG on G§. As the nonlinearities are given by power series,
they are differentiable. Then Dy F, DyG can be similarly estimated as in lemma 2.2 and
DyF(U),DyG(U,8,¢) are bounded linear operators for bounded U, see also [Mat01, lemma
2]. In the same way (H.3b) implies (H.4) with s > g + 1 by applying lemma 2.3. O

This also completes the proof of proposition 2.1.

3 Averaging

In this section we are going to give the proof of theorem 1. Before going to the technical
details, we outline the proof. There are three main steps:

¢ First we modify averaging results of exponential order for bounded ordinary differential
equations by Neishtadt [Nei84], such that they can be applied to a finite dimensional
Galerkin approximation of equation (1.4), where the norm of the vector field becomes
unbounded with the dimension of the Galerkin approximation k. This will give a
homogenised equation, where the inhomogeneous remainder is exponentially small in
some algebraic expression of ¢.

10



iIRF

N;’Z(DN)

IR*

-
N5

N

~

N5? (DN

Figure 1: The domain Dy and its complex extensions.

e The second step deals with the infinite-dimensional part, which is not considered in
the Galerkin approximation. This will then be estimated using the extreme regular-
ity of bounded solutions. The remaining Galerkin modes decay exponentially in the
dimension k of the our approximation space.

e Taking both exponential estimates together for an appropriate coupling of £ and &
. . 1
gives error estimate of order exp(—ce™2).

Due to the construction of the homogeneous equations by the Galerkin approximation, which
is nonlocal in the cross-section and does not preserve the second order structure, there will
be nonlocal corrections, which also destroy the original second order structure of (1.1).

Thus we have to deal with nonlocal operators anyway, hence we use the reformulated
assumption (H.4) instead of (H.2), (H.3a) and (H.3b). Furthermore we need to assume ana-
lyticity on the Galerkin approximation space Hp, which is the span of those eigenfunctions
of A, which have eigenvalues of modulus < N:

2
Hy = {span{vw,wk,l} ‘k ezZ%1=1,...,n, with |k|\/dmm% < N} (3.1)
Then the restricted and projected nonlinearities
PNF,PNG: Dy := Hy N Bg:(M) = Hy (3.2)
are assumed to be real analytic taking Hy = IRF for & = dimg(Hy), in accordance with

(H.4) we consider a ball of radius M = 2R + 1. Moreover we assume that the analytic
continuation of the nonlinearities to a complex §-neighbourhood (see figure 1)

. o .
5,0 — (] = j T e € _
N (D) :={U = E U’ exp(i 7 jz)|U? € € ,Vlen[gN U -V

jezd|j| inint <N

gz(,an) < 5}

is uniformly bounded in o, N, ¢ and ¢, again the case o = 0 corresponds to the Sobolev norm
of the phase space X. To summarise

11



PNF PNG: Dy — Hy is real analytic
supyyens (py) IPNF(Un)lgs < B (H.5)
SUPy N eN:7 (D) tER |PNG(Un,t,h)|gs < B2

We again only consider solutions V'(.) € Ar C BC(IR, X), which have a uniform bound
R.

Theorem 2 Assume (H.4) and (H.5) for the nonlinearities of (1.4). Fix the perturbation
order p > 0 and the bound R > 0. Then there exists a t-periodic transformation of the phase
space Bx (R) for 0 < e < gq, given by

t
U=V +cW(V, g,s) (3.3)
with the following properties. Both
wW(,0,e): Bx(R) — X
W(.,0,e) : Bgs 2R+1) — G
are analytic. Its image W (X, Lt,¢) is finite dimensional for fized e and W (.,0,.) = 0. The
transformed system has the form
0 _ t
5.7 () = AV (t,2) + F(V(t,2)) + F(V(2),)(@) + a(V (1), 2, €) (@), (3.4)

with o, F bounded for V € Bx(R), but nonlocal in the cross-section.
For all bounded solutions V(.) € Ar C BC(IR,X) of (1.4) and for all solutions V (.) €
BC(IR, X) of (3.4) fulfilling (H.1) with ||V ()llpcr,x) < R - i.e. V(.) is in the attractor

AR -, the following estimates on the transformed terms and their derivatives hold

sup  [la(V(.),e)llBewrx) < Cy exp(—Cie3). (3.5)
V()EARUAR
sup  [[F(V(.),e)llBerx) < Cse? (3.6)
V(.)EBx(R)
sup  [[Dva(V(.),.,8)llL(Bor x),Bor X)) —+ 0 fore—0 (3.7)
VeArUAR
sup [|DvF(V(.),e)ll(Bor,x),Borx)) — 0 fore—0 (3.8)
VEBx (R)

The exponent C is given by min(cy,0R), where og is the Gevrey exponent in (2.5). The con-
stants c¢1,Cs,Cs,e0 depend on the majorising functions as and bs in (H.4), on the constants
B, and By in (H.5) and R.

Remark 3.1 The estimates (3.5,3.7) hold similarly for all bounded V(.) € BC(IR,G3) for
some o > 0. The property V(.) € Ar U Ag is sufficient for this by proposition 2.1.

Proof:
The proof can be divided into three steps. In the first step we analyse a finite dimensional
problem by reducing to the Galerkin approximation

. t
Uy = AUy +PYF(Uy)+e"PYG(Ux, -,2)
UN(O) = PNU()EHN,
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where AUy = PN AUy and where we choose N depending on ¢. The parameter N is
by definition an upper bound on the largest eigenvalue of |A| restricted to the Galerkin
approximation space Hy, see (2.1,3.1). We will couple N and € by

NHPe <1, (3.9)

where 5 > 0 is to be chosen later. Step 1 is adapted from the proof of Neishtadt’s theorem
[Nei84] about averaging of exponential order for finite dimensional ODE. First we make
successive formal coordinate changes, such that the nonautonomous terms are formally of
higher order in ¢ in the transformed equation

Vi = AVy + PNF(Vy) + F(Viv, €) + a(Viy, é ). (3.10)

Then we will give estimates uniformly in € and N (¢) using the Gevrey norms in GJ , which
will give with ¢ = 0 the required estimates in X. We will perform r ~ 1/¢7 successive
coordinate changes, where 7 is chosen in the proof. In the transformed equation the nonau-
tonomous terms are exponentially small in €. In step 2 and step 3 we will consider again
the full infinite dimensional problem. We perform the formal coordinate change and prove
error estimates for the finite dimensional approximation in step 2. In step 3 we will finally
combine both estimates to derive the exponential estimates.

Step 1: Finite dimensional transformation

a) Formal coordinate changes
We describe the formal coordinate changes needed to remove nonautonomous terms. For a
moment we suppress the dependence of U on N. The situation after j coordinate changes
is given by

U = AU + PNF(U) + F;(U, ) +aj(U,£,6) (3.11)

with average (a;)(U,¢) = fol a;(U,0,e)dd = 0 and U in a complex extended domain Df\,
with Nj/2(Dn) C ng C N;(Dn), see figure 1. Before performing the first coordinate
change, we have Fy = ¢?(G) and ag = e?(G — (G)).

Starting with (3.11) the next coordinate change is written as

U=V +eW;(V,1,¢) (3.12)

with W periodic in 7 = £ with period 1. Substitution into (3.11) yields to

. 0 . 0
V+ EWW]'(V, ,e)V + EW]'(V, T,€)

= AV +eW;(V,7,6)) + PNEF(V + eW;(V,7,¢))
+Fj(V +eW;(V,1,¢),€) + a;j(V + eW;(V,T,¢€),T,¢)

A formal Taylor expansion in V gives

-1
vV = (I+5%Wj(v,r,s)> {AV—}—PNF(V)—i—Fj(V,s)

PN F(V)
av

oa;(VyT,e) 0
% eW;(V,1,€) + h.o.t. 8TWJ(V,T,6)}

= AV +PNF(V)+ F;(V,e) + a(V,,¢), (3.13)

8F'j(V, 8)

+6AW]'(V, T,E) + v

eW;(V,7,e) + eW;(V,1,¢€)

+Oéj(V, T, 6) +
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where the last equality defines a. The term of formal lowest order in e, which are time-
dependent, is a;(V, 7,¢). To remove this term we let

W,(V,7,e) = / a;(V, 0, )dé.
0

Then we choose
Fia(Vie) = (V) + (a(V,,€)), a1 (V,7,h) = a(V, 7€) — (a(V, ., €)). (3.14)

b) Estimates for the finite dimensional system
We give rigorous estimates for the formal procedure of part a). Suppose r substitutions
are made altogether for a fixed €. The domain DY, after j substitutions is given by D}, =
N;ij(E) (Dn) where the function K (¢) is chosen later.

We use again the notation ||f|lgs xzsw(py = SUPyen 7 (D) |f(U)|gs for some complex
extension V3>7(D) of D C Hy NG5 (2, R). Then by construction we have

2B28p

B26p

[lvol

[1Fol

g N7 (Dy) S
<

G5 .N57 (Dn)
uniformly in . We will show inductively for 1 < j <r:

1751

< B (3.15)

g:.pi, < M; with M; = 277 ByeP. (3.16)

g:.D}

llevs |

We will choose g9 and K (¢) such that r substitutions are defined for 0 < € < g9, V € D3 =
N;;‘T(r+1)K(6) (Dn) # 0 and the inductive assumptions (3.15) and (3.16) are fulfilled.

For the estimates we need the following version of the Cauchy estimates, where the vector
norm |.| in C* is arbitrary. We will apply it on the Galerkin approximation with norms,

which are induced by the Gevrey norms.

Lemma 3.2 (Cauchy estimate) Let f : @ C €F — €* be analytic and || f|lo = sup,cq |f(u)].
Then |%(af:)| < %“f”g for z € Q and dist(z,6Q) > 7.

This is a simple application of the Cauchy formula (see [Mat01, lemmaT]).
For induction we assume that (3.15) and (3.16) hold for j. To simplify notation we
suppress the arguments of W and the dependence on time and parameters N, in the

functions. We use the notation ||f[ly := || fllgs = (D)-
Then we obtain for the jth coordinate change
leW;lls;, < Mje, (3.17)
which yields by lemma 3.2 to
oW; Mje

lle (3.18)

o < .
E lls; k() < x()

We estimate the higher order term a in (3.12).

d -1 ;
lalls,~x@E) < |l [1+5WW]-] {PNF(V +eW;) + F;(V + eW;)
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+a;(V +eW;) — (V) + AV +eW;)}

—[AV + PNE(V) + F;(V)] s,k ()

I [I + s%wj] ) {eAW; + PNF(V +eW;) — PNF(V)
+Fj(V + EW]') — F](V) + a]’(V + EW]') - Oéj(V)

IN

) _
—EWW]- [AV + PNF(V) + F;(V)] } lls; - (o)

We can estimate ||AV|| by cN||V||, because A = BA with some bounded operator B and
|Ajay |l < N. Using Neumann series and the mean value theorem we have

o0
0 0

ke < — W ||® Wills. |eN + | =P F||s. _ k(e

llls < gl o {1l o + P Fl s

o - 0
+||WF]'”6]-7K(E) + ||WO‘J'||5J'K(E)]

P _
+||8WW]'”6]-7K(6) [eN|IVls; + |IPNF|5, + ||FJ'||5J‘]}

Applying the Cauchy lemma gives

B 2B, M;e
lalls,~x@E) < 2 {EMJ- [cN+ + ] n K(JE)

K K@) [cNM + By + 231]} ,

where M is the radius of Dy, see 3.2. Using N'tfe < 1, which is equivalent to N < s%,
and setting

K(e) = KeT+7 (3.19)
we obtain
- B M B 1
“a“d]-—K(E) < Mj |:256ﬁ +6— 171 +2—=+6— 171 ] < _Mj
Ket+s K Ket+s 4
for K large enough. Therefore
M
||aj+1||5j+1 < TJ = Mj+1
and M
1Fj1 = Fillsjen <
Hence
— — j — —
||Fj+1||(5j+1 S ||F0||(5j+1 +Z||Fk+1 _Fk||(5j+1
k=0
19 p o] p P
< > My + Bae? < 5 Bae? + Bae” < By (3.20)

k=0

for €9 small enough. Thus the inductive statements (3.15) and (3.16) are satisfied for j + 1
for such a g9 and the above choice of K (). So we can carry out the coordinate changes as
long as N; (D) # 0. More precisely, for §, = — rK(e) > /2 we need

0 4] é
r = = 5 =

2K(e) 2KeTHp 2[26%
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Letting a. = a,()(V, ﬁ,s, N(g)) and F, = Fr(s) (V,e,N(g)) we get estimates for GS-norms
uniform in £ — 0, N(g) — oo, as 6/2 2(Dn) C DIT\;E):

llvllgs N5y < 27" BoeP < coeP exp(—clsfﬁ), (3.21)
[1F]

G: N7 (Dy) < CeP. (322)

5/2
Applying the Cauchy estimate again, also gives estimates on the derivatives:

B

), (3.23)

1Dy
| Dy F.|

g NG (Dy) < Cexp(—cie
g Ngg(Dy) < CeP. (3.24)

Step 2: Transformation of the full system
a) Formal Transformation
Next we deal with the full infinite dimensional system. We let

t
U= V+6W(PNVag757N)7

which means (I—Pn)U = (I—Py)V as W € Hy, i.e. the other modes stay unchanged. Here
N = N(g) is chosen maximally such that N'*5¢ < 1 holds. Thus in the new coordinates we
get, when suppressing the arguments ﬁ and € of W

.9
N N
gpvy W (ETVIV A 5rW(PTV)

= AV +eW(P V) + F(V +eW(PNV)) +ePG(V 4+ eW (PNV), g,g).

V+e

Solving for V gives

' _ N N N
vV = [I+€8PNV (P V] AV +eW(PYV))+ F(V + W (PYV))
t 3} t
D N e _ N -
+ePG(V + eW(PYV), o ,E) _8TW(P V,g,s)}.

We split G7 into the Galerkin approximation space Hy and its G orthogonal complement

HIJ\; By using
-1
W(PNV)] =iy
|HY i

[+e-0
PNy

we obtain

V.

(I —PN) {AV + F(V 4+ eW(PNV)) +ePG(V + W (PNV), é s)}

9 -1
N N N N N
+P [I+58PNVP W (P V)] P {A(V-i—sW(P V)
+E(V +eW(PYV)) +ePG(V + W (PVV), 2,5) - —;TPNW(V, 2,5)}

(I —PN) {AV + F(V 4+ eW(PNV)) +e?G(V + W (PNV), é s)}
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_ t
+pPN {AV +F(V) + F(Vie, N) + au(V, <, N)}

8P(?VVW(PNV)] ) PN{F(V +eW(PNV))

+ePG(V + W (PVV), é e) — F(PNV + W (PVV))

+pPY [I+s

_ePG(PNV + W (PVV), é 9}

Thus we have an equation as in (1.5)

V=AV 4+ F(V)+ F(V,e) + a(V, é £) (3.25)

where we group the terms in the following way
F(V,e) = F(V,e)+ (ba(V,. e, N(2))) (3.26)
oV, é,s) — é,a,N(s)) +b(V, é,a,N(a)) bV, e, N(E))),  (3.27)

with an additional correction term b = b; + bz_ . The infinite-dimensional correction b; of the
error in the higher Galerkin modes (where A has eigenvalues of modulus greater than N)
occurs as these modes were neglected in the coordinate transformation. We have

bl(Va éaaa N(&‘))

= (I-PM) {F(V +eW(PNV)) = F(V) + G(V + ePNW(V), é s)} . (3.28)

We get also a correction bs in the finite dimensional Galerkin space, as there is an error in
the lower modes due to the neglected influence of the higher Galerkin modes to the lower
ones. It is given by

b2(V7 E,E,N(E))
= |I+ s%W(PNV) - PN{F(V +eW(PNV)) - F(PNV + W (PNV))

+e?G(V + W (PNV), é, ) —e?G(PNV + W (PNV), é, 6)} . (3.29)

b) Estimating the full system
To prove the estimates (3.5, 3.6, 3.7, 3.8) we will show first, that bounded solutions of the
transformed equation (3.25) are Gevrey regular. Then the additional terms can be estimated
very easily using the following observation:

We use only that V (¢) is uniformly bounded in the Gevrey norm G?, this is the reasons,
why remark 3.1 holds. When we measure the difference between V' and its projection to Hy
then we get an exponential estimate:

V() = PMV(t)lx < |V(2)

g: exp (—oN). (3.30)

For solutions V(.) in the attractor of (1.4), this holds directly by proposition 2.1. As
pointed out in remark 1.1, we do not need to assume that V(.) solves the particular equa-
tion, we are transforming, solutions of any other equation, which fulfills the assumptions of
proposition 2.1 gives the needed uniform boundedness of the Gevrey norms.
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To show it for the transformed equation, we first have to check the assumptions of the
regularity proposition 2.1 for the transformed nonlinearity F(.)+a(., ﬁ, g, N)+bi(,, ﬁ, g, N)+
ba(., E,E,N) for fixed N,e. Then we can use (3.30) to estimate b; and b,. The property
(H.1) for V(.) holds by assumption. It remains to check (H.4).

Consider the nonlinearity F.(.,e,N) + a.(.,£,,N), which was defined by the finite
dimensional part on Dy = Hy N Bgs (M), a ball of radius M = 2R + 1. By (3.21) and
(3.22) we have the existence of majorating functions as, bs independent of o. The existence
of ¢ » follows from (3.23,3.24). The differentiability and continuity comes from the fact, that
they hold for the original equation and the transformation is analytic in U and continuous
in #. It remains to show the properties for

F(. +eW(PN.), G(. + PN (), g,g) . Bg. (2R +1) — G2

The transformation V + W (V) is given by the successive coordinate changes V; = Vj41 +
eWjy1(Vjt1). Using (3.17, 3.18), V +eW (V) is a near-identity and differentiable coordinate
change uniformly for every G5 norm. The mapping

9 -1
I+e—P W)l PV
+e P V)

occurring in bs is near to the identity by (3.18). Thus the estimates on F' and G and their
derivatives hold in a straight forward way for b; and b and their derivatives too. The
differentiability and continuity are preserved by the transformation. Thus the assumption
(H.4) of proposition 2.1 holds too, i.e. proposition 2.1 is applicable to the solution V' of
(3.25). B

Hence (3.25) has Gevrey regular solutions. We can estimate |o(V (t), £,¢)|x and [F(V (t),€)]|x.
We start with F'(.,e) = Fi(.,&, N) + (b1 (.,.,&, N) + ba(.,.,€, N)). For the finite dimensional
part we have |F,(V,e, N)|x < c3eP by (3.22) for V' € Xbounded. Estimating (b;) we obtain
for V € X = G§ bounded:

|<b1 (Va &, N)>|X
(I - PY) {F(V +eW(PNV)) = F(V) + PGV + ePNW(V), é g)} Ix

IN

< sup |F'(U)|nx,x)|eW(PYV)|x + By < CeP (3.31)
U=V+rW(PNV),re0,]

because [eW (PNV)|x < CePtl.

Furthermore we have || Dy ((b1))|lz(x,x) < Ce? when ¢ — 0 for U € X bounded, as F
and G are C! in U. This gives together with (3.24) the estimate (3.8).

Next we need a slightly more careful analysis for the nonautonomous part:

la|x = |ow + b1 + by — (b1)|x-
For the first part we have by (3.21):

t ]
|k (V, g,s, N)|x < coe? exp(—cie™ T+7)

For by — (b1) we use the same analysis as for (b;) above, except we also note that V' is bounded
in the Gevrey norm G2. Hence b, (V) € G and thus with K = {V + reW (PNV),r € [0,1]}

iV, 218 N) = (i (Vee, N)lx < 21 = PYY{F(V + W (PYY)
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CF(V (1) + PGV + eW (PVV), é )} x

< (sup |F’(U)|L(g;7gj) 8W(PNV) gs +8pBl>
UeK
-exp (—o[AN41])
< CePexp(—oN). (3.32)

For b5(V'), which was created by the Galerkin approximation in the finite dimensional part,
we obtain an exponential estimate for V € GZ. For V € G2 define the line segment Ky =
{rV+ 0 —=r)P NV +eW(PNV)|r € [0,1]}, we then obtain

|b2(V, .,8,N)|X

W (PNV) 1 PNAF(V +eW(PVV)) — F(PNV 4+ eW (PNV))

0
| I+68PNV

PGV + eW (PNV), é,s) — PGPV + eW (PVV), é a)} Ix

< 2(sup |F'(U)|px,x) V() — PNV(t)|x
UeKy
+ sup |G'(U®)|Lx,x)V — PVV|x)
UEKy
< C|V-PNV|x <Cexp(—oN), (3.33)

where we used (3.30). As above we also obtain || Dy (by — (b1) +b2)(V)|r(x,x) — 0 fore — 0
and V € G for o > 0, as F, G are C'. This gives, together with (3.23), the estimate (3.7).
Step 3: Combining the exponential estimates

We now balance the exponential estimates of Step 1 and Step 2 using the freedom we still

—1
have in choosing § in (3.9). Using that N is maximal such that N < ¢T##, the estimates
(3.32, 3.33) can be expressed in . Then we can balance the two exponential estimates of
the different parts of a, the exponent o is then og given by proposition 2.1.

exp(—clafﬁ) from (3.21)
1

exp(—oge T7) from (3.32, 3.33)

The best exponential estimate is obtained when choosing 8 = 1. Then the estimates are of
order exp(—ce~2) and N(¢) = O(¢~2). This gives the estimates (3.5,3.6). It just remains
to check the boundedness of F' and a. The transformed nonlinearities F' and « are bounded
on X, since all estimates hold for G, 0 > 0 and thus also for X = G§. The estimates in
(3.31,3.32, 3.33) do not yield exponential smallness for the case o = 0, but they give then
still boundedness. The finite dimensional part is still exponentially small.

Differentiability, in fact analyticity of the transformed nonlinearities and of W with
respect to V' in some ball of X resp. G2 follows with the Cauchy estimate as W, F' and «
are bounded by the above analysis on a complex extension of such balls in X resp. G3. O

Remark 3.3 If G is smooth in €, then the construction can be modified such that F(V,¢)
and a(V, L, ¢) are smooth in €. This can be done in the same way as in [Mat01, remark9].

Proof of theorem 1: It remains to check (H.4) and (H.5), such that theorem 2 then implies
theorem 1. By corollary 2.4, the assumptions (H.3a)/(H.3b) imply (H.4). To check (H.5),
we restrict and project F' and G to Hy. Then F,G are given by a convergent power series
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in the coefficients of the eigenfunction expansion, see [Mat01, remark 6]. This power series
converges for the whole Hy. The estimates on the complex extension follow from lemma
2.2 and lemma 2.3 respectively.

Thus the assumptions for theorem 1 imply those of theorem 2 and the proof is complete.
O

4 Equilibrium solutions

We now apply theorem 1 and 2 to describe quantitatively the effect of the nonautonomous
forcing on special solutions. Our main interest here is on equilibrium solutions of the original
— unforced — equation.

Other special solutions, to be analysed in a forth-coming paper, which can be understood
as fronts of velocity 0 for parabolic equations as in (1.2)

Ur = A(t,z)u + f(u7 A)

on a space-domain (¢, z) € IRxQ with time 7 and a parameter A € IR. Typically those pinned
fronts exist in the homogenouos case only for special parameter values )y, whereas adding
nonhomogenouos perturbation £g(u,t) will pin fronts in a whole interval I of parameters.
Using theorem 1 and theorem 2 it is possible to show, that the length |I| of the pinning
interval is exponentially small for rapid forcing terms eg(u,t/€).

Here we study equilibria, equilibria are solutions (¢, z) = w(z), which do not depend on
t, i.e. %u(t, z) =0, ie. DAyw + f(w,0,V,w) = 0. We will consider hyperbolic equilibria.
As in dynamical systems the equilibrium w(z) is called hyperbolic, if the linearised operator

L=A+ DF(w,V,w,0)
has no spectrum in a strip near the imaginary axis:
spec(L) N {z||Re(z)| < 6} = 0.

For another definition of hyperbolic equilibria of elliptic equations on cylinders, see [FSV99,
sec. 5]. Note that when we impose periodic boundary conditions, that there is a translation
symmetry in z, creating zero eigenvalues. Adding a slow spatial inhomogeneity A in an
appropriate Gevrey space to break this symmetry is allowed by (H.4), such that we consider

Zu+ DAyu = f(u,us, Vyu) + ePg(u, ug, Vyu, é,s) + h(z), (4.1)

and the whole theory still applies. It is standard, that hyperbolic equilibria persist under
small autonomous perturbations and that they also persist as solutions, which are e-periodic
in ¢, under rapid nonautonomous periodic forcing. The distance between original and the
perturbation is in the order of the perturbation.

The new result is, that the periodic solutions, which are created by rapid forcing of
the hyperbolic equilibria are in fact exponentially close to hyperbolic equilibria of the ho-
mogenized equation. Thus the modulation is only exponentially small in the transformed
phase-space.

Proposition 4.1 Let the assumptions of theorem 1 hold. Fix some perturbation order p > 0.
Furthermore assume that the original unforced equation (1.4 with ¢ = 0) has a hyperbolic
equilibrium po. Then the forced solution has a bounded solution p.(t,z), which is periodic in
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t with period €. The truncated equation (1.8) has a hyperbolic equilibrium solution p.. For
these the following holds:

Ce? (4.2)
Cexp(—Cls_%), forallt € R

|p0 — De |X S
|ps (t) — Pe |X <
i.e. the periodic solution created by the rapid inhomogeneity is exponentially close to the
equilibrium of the homogenised equation.

Proof: To prove the persistence of equilibria and the existence of periodic solutions we
apply some implicit functions argument, similar to Lord et al. in [LPSS00]. The following
version of Banach’s fixed point theorem is used, see [LPSSO00].

Lemma 4.2 Suppose Y is a Banach space and H : Y — Y is C. Assume, that there exists
a bounded linear and invertible operator L : Y — Y | an element Uy € Y and numbersn > 0
and 0 < k < 1 such that

1. I =L 'DH(U)|p(v,y) < & for all U € By (Uo)
2. LT H(Uo)ly < (1—r)n
There exists then a unique point U, € B, (Up) with H(U,) =0 and
Uo = Usly < (1= &) LT H(Uo)ly
First we show the persistence of hyperbolic equilibria p.. Consider

(A+ DyF(po)) " (A(po + U) + F(po + U) + F(po + U,¢))
= U+ (A+DyF(po)) " (F(po +U) — F(po) — DuF(po)U + F(po + U,¢))
=: H.(U)

To find equilibria, we look for zeros near U = 0. The map H is smooth in U as a map
Bx(R) — X and by (3.6)

|H.(0)] < [(A+ DuF(po))~" F(po,e)| < Ce?.
Furthermore we have
|DvH.(U) — I||
= (A4 DuF(po)) " (DuF(po + U) — DuyF(po) + DuF(po + U, e))|| <

DN | =

for all U in a small enough ball in X of radius 7, uniformly for 0 < e < g9 by (3.8). Hence
there is by lemma 4.2 a unique zero p. € B, (Up) C X of H, with

|De — po| < Ce?

The linearisation A+ Dy F(p.) + Dy F (P, €) is hyperbolic for & small enough, since F is C*
and Dy F' is small. Furthermore p. is as smooth in € as F'(U, ) is.
To find periodic solutions consider

HU)=U,; - (AU + F(U) + F(U,e) + a(U, é s)> (4.4)
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as an operator on some subspace of Cger ([0,T], X), the space of periodic continuous functions
on the finite interval (0,7) with values in X. Using an implicit function argument, we will
show, that there exists a unique solution in this subspace near the equilibrium py, which
will be the desired e-periodic solution, when letting 7' = ke, k € IN.

Let X = H"(Q,R") x H"~'(Q,R") with r € R and r +1 > s > r > 0 and with the
convention H° = L2. Then on X the domain of A is given by D(Az) = H™1(Q,R") x
H" (2, IR™). The Sobolev exponents s > r are chosen such that F': X — X is differentiable.
This is possible for our the local nonlinearity in (4.1) by lemma 2.3 and the proof of corollary
2.4. We consider the following linear operator Ly related to (4.4). We will show, that Lo is
invertible and which will imply by Fredholm arguments, that D H (po) is also invertible. Let

Py denote the projection to the n-dimensional kernel of A, spanned by vg; (see (2.2)).
Loy(U) = Ui—(A+ PR)U
Ly : Y—Y

Where we use the following function spaces Y = Cpax([o, 17, X), the space of periodic Holder
continuous functions with norm

Ui)-U(1)|%
Wiy = sup 0O+ sup 0TI
¢€[0,T) ,t€[0,T] |t — |

and Y = CL,.([0,T],X) N C2,.([0,T], D(A)) N {U|U; — (A + P,)U € Y} with norm

per per

wazt%%WNMX+WWM@jQ+SW|WmMm+Wﬁ—M+HMW%
€10,

t€[0,T)

Then Ly is invertible. As mentioned in the beginning of section 2, A_ generates an analytic
semigroup on P_X for negative times and A, generates an analytic semigroup on Py X for
positive times. The latter is not changed by the finite dimensional perturbation to A4 + Py,
which still leaves Py X invariant.

For f € Y, the inverse is given by

u) = Z:HP«A++Rﬂ@—7»&jﬁMT+mm«A++PwﬂPJMm
T
+ /t exp (A_(r = T))P_f(r)dr +exp (A_(t — T))P_U(0),

where the U(0) and U(T') are chosen to fulfil the periodic boundary conditions U(0) = U(T)
on (0,T):

1 T
P_U(0) = (I — exp (A_(—T))) /0 exp (A_(r = T))P_f(r)dr

-1 T
PLU(0) = (qumM++%ﬂf)Léeq4m++%xT—ﬂﬂaﬂﬂm.

From [Hen83, lemma 3.5.1] we then have, that U is even differentiable with values in
some fractional power space, which can be identified with the original X, if the Holder
exponent v is large enough, i.e. for v > s —r, then U € C'((0,T), X). Next we consider

Li:Y = Y
Ll(U) = Ut —AU—DUF(po)U

22



Again, as U € Y implies U € Cj,,.([0,T], X), we have then Dy F(po)U € C,,,.([0,T], X) and

thus L; (U) € Y. As CL,,.([0,T], X) embeds compactly into ¥ = C%7([0,T], X), we have

that Dy F(py) : Y — Y is a compact operator. Then Ly = Ly — Py + Dy F(py) is Fredholm

of index 0: As Ly is invertible, it is Fredholm of index 0 and Fredholm properties persist

under the compact perturbation —Py + Dy F(pp). Thus L is Fredholm of index 0. Due to

the hyperbolicity of the equilibrium pg, the kernel of L; is trivial, thus L; is invertible.
Next we apply lemma 4.2 to H given in (4.4) and L given by

LU = LlU = Ut - AU - DUF(po)U.
Then

[ = L7 DH(U) vy = |1~ (DuF(U) = DuF(po) + Du(F(Use) + (U, ,2)| < = (4.5)

DN | =

holds for U € B, (p.) C Bay(po) for some fixed small  and for 0 < £ < £, as F is C* and
|DuF(U,¢)|r(x,x) € o(1) by (3.8). For |Dya(U,e)| we need a more careful analysis: By
(3.27)

aU,2,6) = au(U, 2,6, N () + b1 (U, 2,2, N()) = (b (U, 2, N(o) + ba (T, 2,2, N(e))

By the analysis in section 3,
t t
[Du(as(V; 2, &, N(€)) +bu(V, =, 6, N(€) = (ba(V, o8, N(e)))|z(x.x) < Ce”

for U € Bx(R). Now consider Dybs, where in general [Dybs(U, £, e, N(¢))|1(x,x) is of order
O(1) for U € Bx(R). We will use here the regularising property of L!. As the Sobolev
exponent r in the definition of X is chosen such that F' : X — X is differentiable we can

estimate as follows, suppressing some arguments for notational convenience.

|Dub2(U)|L,x, %)
—1
= |Dy{|I+ s%W(PNU) PNALF(U +eW(PNU)) — F(PNU + W (PNU))

+ePG(U + W (PND), é,s) _2G(PNU + =W (PND), 2,5)}}|L(X7)—()

C|DF(U + W (PNU))(id + ELW(PNU))

<
< aPNU

~DF(PNU +eW(PNU)(PY + 5 W(PNU)|y x x) + CeP
< Ce? + C|DF(U +eW (PNU) (I - Py)lpix %)

+|[DF(U + eW (PNU)) — DF(PNU 4 W (PNU))|[Px + ¢
< Ce?+CN™* +Cn,

0
= W (PN D)l x5,
as |(I = Pn)|yx,%) < CN"* and |PNU — U|x < Cn uniformly in B, (p:) for N(g) > Ny
large enough. Choosing 7 small enough and using L' : ¥ — Y and D(4 %) C X completes

the estimate (4.5).
Furthermore

|L71H(ﬁ6)|y = |L71a(]557'78))|Y S CeXp (—%) )
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by (1.6). Even if p. is in general not in the attractor of the equation (1.5), the estimates
as in (1.6) still hold, as p.(t) is Gevrey regular, see remark 3.1. Thus by lemma 4.2, there
exists a unique solution U, of H(U) = 0. All this is uniform in T, so when we are changing
T slightly, such that T = ke for some k € IN, then the estimates do not change. Then U,
is in fact periodic of period e. Because otherwise the shifted solution U(. 4+ ¢) would be
another solution of H near py, which contradicts uniqueness. Thus U. can be identified with
a periodic solution p. with

_ c
IPe — pellBo(r,x) < Cexp 7
This completes the proof of the proposition. O
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