Research

On the Novikov-Shiryaev optimal stopping problems in continuous time


Reference:

Kyprianou, A. E. and Surya, B. A., 2005. On the Novikov-Shiryaev optimal stopping problems in continuous time. Electronic Communciations in Probability, 10, pp. 146-154.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.

Official URL:

http://www.math.washington.edu/~ejpecp/ECP/viewarticle.php?id=1733&layout=abstract

Abstract

Novikov and Shiryaev (2004) give explicit solutions to a class of optimal stopping problems for random walks based on other similar examples given in Darling et al. (1972). We give the analogue of their results when the random walk is replaced by a Lévy process. Further we show that the solutions show no contradiction with the conjecture given in Alili and Kyprianou (2004) that there is smooth pasting at the optimal boundary if and only if the boundary of the stopping reigion is irregular for the interior of the stopping region.

Details

Item Type Articles
CreatorsKyprianou, A. E.and Surya, B. A.
DepartmentsFaculty of Science > Mathematical Sciences
RefereedYes
StatusPublished
ID Code7137

Export

Actions (login required)

View Item