Research

Generalised likelihood ratio tests for spectral density


Reference:

Fan, J. Q. and Zhang, W. Y., 2004. Generalised likelihood ratio tests for spectral density. Biometrika, 91 (1), pp. 195-209.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.

Abstract

There are few techniques available for testing whether or not a family of parametric times series models fits a set of data reasonably well without serious restrictions on the forms of alternative models. In this paper, we consider generalised likelihood ratio tests of whether or not the spectral density function of a stationary time series admits certain parametric forms. We propose a bias correction method for the generalised likelihood ratio test of Fan et al. (2001). In particular, our methods can be applied to test whether or not a residual series is white noise. Sampling properties of the proposed tests are established. A bootstrap approach is proposed for estimating the null distribution of the test statistics. Simulation studies investigate the accuracy of the proposed bootstrap estimate and compare the power of the various ways of constructing the generalised likelihood ratio tests as well as some classic methods like the Cramer-von Mises and Ljung-Box tests. Our results favour the newly proposed bias reduction method using the local likelihood estimator.

Details

Item Type Articles
CreatorsFan, J. Q.and Zhang, W. Y.
DepartmentsFaculty of Science > Mathematical Sciences
RefereedYes
StatusPublished
ID Code7250
Additional InformationID number: ISI:000220652500014

Export

Actions (login required)

View Item