Field emission from nano-cluster carbon films


Milne, W. I., Ilie, A., Cui, J. B., Ferrari, A. and Robertson, J., 2001. Field emission from nano-cluster carbon films. Diamond and Related Materials, 10 (2), pp. 260-264.

Related documents:

This repository does not currently have the full-text of this item.
You may be able to access a copy if URLs are provided below.


Field emission has been reported to occur at much lower fields in carbon based thin film systems than from any other material systems. The emission has been shown to depend on the various material parameters, but whichever carbon based system is used, it is found that emission occurs at localised sites rather than uniformly over the entire surface. Carbon films with mixed sp(3)/sp(2) bonding, like nanocrystalline diamond and nanocluster graphitic films emit at lower fields with a higher emission site density than single-phase films. The sp(2) cluster size in any carbon film can be altered during deposition, but it is easier to control nanocluster size by post-deposition annealing. Annealing increases the sp(2) cluster size embedded in a sp(2) matrix until the sp(3) matrix disappears completely and the film transforms into nanocrystalline graphite. To distinguish the effects of the sp(2) cluster size from other material parameters, a series of different carbon films were annealed post-deposition and the sp(2) cluster size was measured using visible Raman. Field emission was then measured at a vacuum of 10(-chi) mbar on all films using a parallel plate configuration. It was found that the field emission for all films tested depended upon the clustering of the sp(2) phase and this effect dominates the effects of the other parameters, such as chemical composition, surface termination, sp(3) content or conductivity. The optimum size of the sp(2) was of the order of 1 nm for all systems tested. We believe that field emission occurs form the localised conducting, predominantly sp(2) bonded regions, which provides the large field enhancement required for effective emission. (C) 2001 Elsevier Science B.V. All rights reserved.


Item Type Articles
CreatorsMilne, W. I., Ilie, A., Cui, J. B., Ferrari, A. and Robertson, J.
DepartmentsFaculty of Science > Physics
ID Code9220
Additional InformationID number: ISI:000167483900022


Actions (login required)

View Item