# Items by Gazzola, Silvia

Up a level |

Number of items:

**14**.## Articles

Gazzola, S. and Wiaux, Y., 2017. Fast nonnegative least squares through flexible Krylov subspaces.

*SIAM Journal on Scientific Computing*, 39 (2), A655–A679.Gazzola, S. and Reichel, L., 2016. A new framework for multi-parameter regularization.

*BIT Numerical Mathematics*, 56 (3), pp. 919-949.Gazzola, S. and Novati, P., 2016. Inheritance of the discrete Picard condition in Krylov subspace methods.

*BIT Numerical Mathematics*, 56 (3), pp. 893-918.Gazzola, S. and Karapiperi, A., 2016. Image reconstruction and restoration using the simplified topological ε-algorithm.

*Applied Mathematics and Computation*, 274, pp. 539-555.Gazzola, S., Onunwor, E., Reichel, L. and Rodriguez, G., 2016. On the Lanczos and Golub-Kahan reduction methods applied to discrete ill-posed problems.

*Numerical Linear Algebra with Applications*, 23 (1), pp. 187-204.Gazzola, S., Novati, P. and Russo, M. R., 2015. On Krylov projection methods and Tikhonov regularization.

*Electronic Transactions on Numerical Analysis*, 44, pp. 83-123.Gazzola, S., Novati, P. and Russo, M. R., 2014. Embedded techniques for choosing the parameter in tikhonov regularization.

*Numerical Linear Algebra with Applications*, 21 (6), pp. 796-812.Gazzola, S. and Novati, P., 2014. Automatic parameter setting for Arnoldi-Tikhonov methods.

*Journal of Computational and Applied Mathematics*, 256, pp. 180-195.Gazzola, S. and Nagy, J. G., 2014. Generalized arnoldi-tikhonov method for sparse reconstruction.

*SIAM Journal on Scientific Computing*, 36 (2).Gazzola, S. and Novati, P., 2013. Multi-parameter Arnoldi-Tikhonov methods.

*Electronic Transactions on Numerical Analysis*, 40, pp. 452-475.Aimi, A., Gazzola, S. and Guardasoni, C., 2012. Energetic boundary element method analysis of wave propagation in 2D multilayered media.

*Mathematical Methods in the Applied Sciences*, 35 (10), pp. 1140-1160.Aimi, A., Gazzola, S. and Guardasoni, C., 2011. Energetic BEM for domain decomposition in 2D wave propagation problems.

*Communications in Applied and Industrial Mathematics*## Conference or Workshop Items

Duarte, R., Chen, Z., Gazzola, S., Marshall, I., Davies, M. and Wiaux, Y., 2017. Forthcoming. Convex optimisation for partial volume estimation in compressive quantitative MRI.

## Thesis

Gazzola, S., 2014.

*Regularization techniques based on Krylov subspace methods for ill-posed linear systems.*Thesis (Doctor of Philosophy (PhD)).