Research

Items by Chalmers, Andrew

Up a level
Export as [feed] RSS 1.0 [feed] Atom [feed] RSS 2.0
Group by: Item Type | Date | No Grouping
Jump to: Articles
Number of items: 30.

Articles

Helsby, M. A., Leader, P. M., Fenn, J. R., Gulsen, T., Bryant, C., Doughton, G., Sharpe, B., Whitley, P., Caunt, C. J., James, K., Pope, A. D., Kelly, D. H. and Chalmers, A. D., 2014. CiteAb : A searchable antibody database that ranks antibodies by the number of times they have been cited. BMC Cell Biology, 15 (1), 6.

Doughton, G., Wei, J., Tapon, N., Welham, M. J. and Chalmers, A. D., 2014. Formation of a polarised primitive endoderm layer in embryoid bodies requires Fgfr/Erk signalling. PLoS ONE, 9 (4), e95434.

Sharpe, B., Beresford, M., Bowen, R., Mitchard, J. and Chalmers, A. D., 2013. Searching for prostate cancer stem cells : markers and methods. Stem Cell Reviews and Reports, 9 (5), pp. 721-730.

Comber, K., Huelsmann, S., Evans, I., Sánchez-Sánchez, B. J., Chalmers, A., Reuter, R., Wood, W. and Martín-Bermudo, M. D., 2013. A dual role for the βPS integrin myospheroid in mediating Drosophila embryonic macrophage migration. Journal of Cell Science, 126 (15), pp. 3475-3484.

Helsby, M., Fenn, J. and Chalmers, A., 2013. Reporting research antibody use : How to increase experimental reproducibility. F1000 Research, 2, 153 v2.

Dukes, J. D., Whitley, P. and Chalmers, A. D., 2012. The PIKfyve inhibitor YM201636 blocks the continuous recycling of the tight junction proteins claudin-1 and claudin-2 in MDCK cells. PLoS ONE, 7 (3), e28659.

Chalmers, A. and Whitley, P., 2012. Continuous endocytic recycling of tight junction proteins: how and why? Essays in Biochemistry, 53, pp. 41-54.

Dukes, J. D., Whitley, P. and Chalmers, A. D., 2011. The MDCK variety pack: choosing the right strain. BMC Cell Biology, 12, 43.

Dukes, J. D., Fish, L., Richardson, J. D., Blaikley, E., Burns, S., Caunt, C. J., Chalmers, A. D. and Whitley, P., 2011. Functional ESCRT machinery is required for constitutive recycling of claudin-1 and maintenance of polarity in vertebrate epithelial cells. Molecular Biology of the Cell, 22 (17), pp. 3192-3205.

Hill, V. K., Underhill-Day, N., Krex, D., Robel, K., Sangan, C. B., Summersgill, H. R., Morris, M., Gentle, D., Chalmers, A. D., Maher, E. R. and Latif, F., 2011. Epigenetic inactivation of the RASSF10 candidate tumor suppressor gene is a frequent and an early event in gliomagenesis. Oncogene, 30 (8), pp. 978-989.

Recino, A., Sherwood, V., Flaxman, A., Cooper, W. N., Latif, F., Ward, A. and Chalmers, A. D., 2010. Human RASSF7 regulates the microtubule cytoskeleton and is required for spindle formation, Aurora B activation and chromosomal congression during mitosis. Biochemical Journal, 430 (2), pp. 207-213.

Recino, A., Flaxman, A., Sherwood, V., Cooper, W., Ward, A., Latif, F. and Chalmers, A. D., 2010. RASSF7: a new possible therapeutic cancer target? Genetics Research, 92 (1), pp. 71-72.

Sherwood, V., Recino, A., Jeffries, A., Ward, A. and Chalmers, A. D., 2010. The N-terminal RASSF family: a new group of Ras-association-domain-containing proteins, with emerging links to cancer formation. Biochemical Journal, 425 (2), pp. 303-311.

Lock, F. E., Underhill-Day, N., Dunwell, T., Matallanas, D., Cooper, W., Hesson, L., Recino, A., Ward, A., Pavlova, T., Zabarovsky, E., Grant, M. M., Maher, E. R., Chalmers, A. D., Kolch, W. and Latif, F., 2010. The RASSF8 candidate tumor suppressor inhibits cell growth and regulates the Wnt and NF-κB signaling pathways. Oncogene, 29 (30), pp. 4307-4316.

Sabherwal, N., Tsutsui, A., Hodge, S., Wei, J., Chalmers, A. D. and Papalopulu, N., 2009. The apicobasal polarity kinase aPKC functions as a nuclear determinant and regulates cell proliferation and fate during Xenopus primary neurogenesis. Development, 136 (16), pp. 2767-2777.

Hesson, L. B., Dunwell, T. L., Cooper, W. N., Catchpoole, D., Brini, A. T., Chiaramonte, R., Griffiths, M., Chalmers, A. D., Maher, E. R. and Latif, F., 2009. The novel RASSF6 and RASSF10 candidate tumour suppressor genes are frequently epigenetically inactivated in childhood leukaemias. Molecular Cancer, 8 (42).

Sabherwal, N., Chalmers, A. D. and Papalopulu, N., 2009. 21-P020 The apical–basal polarity kinase aPKC functions as a nuclear determinant and regulates cell proliferation and fate during Xenopus neurogenesis. Mechanisms of Development, 126 (Suppl 1), S319.

Wei, J., Sanchez Ripoll, Y., Welham, M. and Chalmers, A. D., 2009. Bmp4 promotes differentiation of the first vertebrate epithelium. Mechanisms of Development, 126 (Suppl S), S271.

Sherwood, V., Manbodh, R., Sheppard, C. and Chalmers, A. D., 2008. RASSF7 is a member of a new family of RAS association domain- containing proteins and is required for completing mitosis. Molecular Biology of the Cell, 19 (4), pp. 1772-1782.

Chalmers, A., Lachani, K., Shin, Y., Sherwood, V., Cho, K. and Papalopulu, N., 2006. Grainyhead-like 3, a transcription factor identified in a microarray screen, promotes the specification of the superficial layer of the embryonic epidermis. Mechanisms of Development, 123 (9), pp. 702-718.

Chalmers, A. D., Goldstone, K., Smith, J. C., Gilchrist, M., Amaya, E. and Papalopulu, N., 2005. A Xenopus tropicalis oligonucleotide microarray works across species using RNA from Xenopus laevis. Mechanisms of Development, 122 (3), pp. 355-363.

Plusa, B., Frankenberg, S., Chalmers, A., Hadjantonakis, A. K., Moore, C. A., Papalopulu, N., Papaioannou, V. E., Glover, D. M. and Zernicka-Goetz, M., 2005. Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. Journal of Cell Science, 118 (3), pp. 505-515.

Chalmers, A. D., Pambos, M., Mason, J., Lang, S., Wylie, C. and Papalopulu, N., 2005. aPKC, Crumbs3 and Lgl2 control apicobasal polarity in early vertebrate development. Development, 132 (5), pp. 977-986.

Chalmers, A. D., Strauss, B. and Papalopulu, N., 2003. Oriented cell divisions asymmetrically segregate aPKC and generate cell fate diversity in the early Xenopus embryo. Development, 130 (12), pp. 2657-2668.

Chalmers, A. D., Welchman, D. and Papalopulu, N., 2002. Intrinsic differences between the superficial and deep layers of the Xenopus ectoderm control primary neuronal differentiation. Developmental Cell, 2 (2), pp. 171-182.

Chalmers, A. D., Strauss, B. and Papalopulu, N., 2001. Primary neuronal differentiation and orientated cell division in Xenopus. Developmental Biology, 235 (1), p. 216.

Hardcastle, Z., Chalmers, A. and Papalopulu, N., 2000. FGF-8 stimulates neuronal differentiation through FGFR-4a and interferes with mesoderm induction in Xenopus embryos. Current Biology, 10 (23), pp. 1511-1514.

Chalmers, A., Slack, J. and Beck, C., 2000. Regional gene expression in the epithelia of the Xenopus tadpole gut. Mechanisms of Development, 96 (1), pp. 125-128.

Chalmers, A. and Slack, J., 2000. The Xenopus Tadpole gut: fate maps and morphogenetic movements. Development, 127, pp. 381-392.

Chalmers, A. and Slack, J., 1998. Development of the gut in Xenopus laevis. Developmental Dynamics, 212 (4), pp. 509-521.

This list was generated on Tue Nov 25 00:43:25 2014 GMT.