Research

Items by Moser, Roger

Up a level
Export as [feed] RSS 1.0 [feed] Atom [feed] RSS 2.0
Group by: Item Type | Date | No Grouping
Number of items: 46.

Book/s

Book Sections

Kurzke, M., Melcher, C. and Moser, R., 2013. Vortex motion for the Landau-Lifshitz-Gilbert equation with applied magnetic field. In: Griebel, M., ed. Singular Phenomena and Scaling in Mathematical Models. Heidelberg: Springer, pp. 113-131.

Kurzke, M., Melcher, C. and Moser, R., 2006. Domain walls and vortices in thin ferromagnetic films. In: Analysis, modeling and simulation of multiscale problems. Berlin: Springer, 249--298.

Articles

Moser, R., 2015. An Lp regularity theory for harmonic maps. Transactions of the American Mathematical Society, 367, pp. 1-30.

Moser, R. and Hornung, P., 2015. Forthcoming. Existence of equivariant biharmonic maps. International Mathematics Research Notices Item availability may be restricted.

Hornung, P. and Moser, R., 2014. Intrinsically p-biharmonic maps. Calculus of Variations and Partial Differential Equations, 51 (3-4), pp. 597-620.

Hornung, P. and Moser, R., 2014. A reformulation of the biharmonic map equation. Journal of Geometric Analysis, 24 (3), pp. 1201-1210.

Kurzke, M., Melcher, C., Moser, R. and Spirn, D., 2014. Vortex dynamics in the presence of excess energy for the Landau-Lifshitz-Gilbert equation. Calculus of Variations and Partial Differential Equations, 49 (3-4), pp. 1019-1043.

Moser, R., 2014. Erratum to:a geometric Ginzburg-Landau problem. Mathematische Zeitschrift, 276 (1-2), pp. 611-612.

Moser, R., 2014. A construction of biharmonic maps into homogeneous spaces. Communications in Analysis & Geometry, 22 (3), pp. 451-468.

Moser, R., 2013. A geometric Ginzburg-Landau problem. Mathematische Zeitschrift, 273 (3-4), pp. 771-792.

Moser, R., 2012. Towards a variational theory of phase transitions involving curvature. Proceedings of the Royal Society of Edinburgh Section A - Mathematics, 142 (4), pp. 839-865.

Ignat, R. and Moser, R., 2012. A zigzag pattern in micromagnetics. Journal de Mathématiques Pures et Appliquées, 98 (2), pp. 138-159.

Hornung, P. and Moser, R., 2012. Energy identity for intrinsically biharmonic maps in four dimensions. Analysis & PDE, 5 (1), pp. 61-80.

Hornung, P. and Moser, R., 2012. Intrinsically biharmonic maps into homogeneous spaces. Advances in Calculus of Variations, 5 (4), 411–425.

Moser, R. and Schwetlick, H., 2012. Minimizers of a weighted maximum of the Gauss curvature. Annals of Global Analysis and Geometry, 41 (2), pp. 199-207.

Kurzke, M., Melcher, C., Moser, R. and Spirn, D., 2011. Ginzburg–Landau vortices driven by the Landau–Lifshitz–Gilbert equation. Archive for Rational Mechanics and Analysis, 199 (3), pp. 843-888.

Moser, R., 2011. Intrinsic semiharmonic maps. Journal of Geometric Analysis, 21 (3), pp. 588-598.

Kurzke, M., Melcher, C. and Moser, R., 2011. Vortex motion for the Landau-Lifshitz-Gilbert equation with spin transfer torque. SIAM Journal on Mathematical Analysis (SIMA), 43 (3), pp. 1099-1121.

Moser, R., 2009. A Trudinger type inequality for maps into a Riemannian manifold. Annals of Global Analysis and Geometry, 35 (1), pp. 83-90.

Moser, R., 2009. Weak solutions of a biharmonic map heat flow. Advances in Calculus of Variations, 2 (1), pp. 73-92.

Kurzke, M., Melcher, C., Moser, R. and Spirn, D., 2009. Dynamics for Ginzburg-Landau vortices under a mixed flow. Indiana University Mathematics Journal, 58 (6), pp. 2597-2621.

Moser, R., 2009. Ginzburg-Landau Vortex Lines and the Elastica Functional. Communications in Contemporary Mathematics, 11 (1), pp. 71-107.

Moser, R., 2009. On the energy of domain walls in ferromagnetism. Interfaces and Free Boundaries, 11 (3), pp. 399-419.

Moser, R., 2008. A second-order variational problem with a lack of coercivity. Proceedings of the London Mathematical Society, 96, pp. 199-226.

Moser, R., 2008. A variational problem pertaining to biharmonic maps. Communications in Partial Differential Equations, 33 (9), 1654 -1689.

Moser, R., 2008. Energy concentration for the Landau–Lifshitz equation. Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, 25 (5), pp. 987-1013.

Moser, R., 2008. The inverse mean curvature flow as an obstacle problem. Indiana University Mathematics Journal, 57 (5), pp. 2235-2256.

Moser, R., 2007. On a variational problem with non-differentiable constraints. Calculus of Variations and Partial Differential Equations, 29 (1), pp. 119-140.

Moser, R., 2007. The inverse mean curvature flow and p-harmonic functions. Journal of the European Mathematical Society, 9 (1), pp. 77-83.

Moser, R., 2006. Remarks on the regularity of biharmonic maps in four dimensions. Communications on Pure and Applied Mathematics, 59 (3), pp. 317-329.

Moser, R., 2005. A higher order asymptotic problem related to phase transitions. SIAM Journal on Mathematical Analysis (SIMA), 37 (3), 712--736 (electronic).

Moser, R., 2005. Energy concentration for almost harmonic maps and the Willmore functional. Mathematische Zeitschrift, 251 (2), pp. 293-311.

Moser, R., 2005. Moving boundary vortices for a thin-film limit in micromagnetics. Communications on Pure and Applied Mathematics, 58 (5), pp. 701-721.

Moser, R., 2005. The blowup behavior of the biharmonic map heat flow in four dimensions. International Mathematics Research Papers (IMRP), 2005 (7), pp. 351-402.

Moser, R., 2004. Boundary vortices for thin ferromagnetic films. Archive for Rational Mechanics and Analysis, 174 (2), pp. 267-300.

Moser, R., 2003. An epsilon-regularity result for generalized harmonic maps into spheres. Electronic Journal of Differential Equations, 2003 (1), pp. 1-7.

Moser, R., 2003. Energy concentration for thin films in micromagnetics. Mathematical Models & Methods in Applied Sciences, 13 (6), pp. 767-784.

Moser, R., 2003. Ginzburg-Landau vortices for thin ferromagnetic films. Applied Mathematics Research Express (AMRE)

Moser, R., 2003. Stationary measures and rectifiability. Calculus of Variations and Partial Differential Equations, 17 (4), 357--368.

Moser, R., 2001. Unique solvability of the Dirichlet problem for weakly harmonic maps. Manuscripta Mathematica, 105 (3), 379--399.

This list was generated on Mon Jul 6 20:16:05 2015 IST.