# Items by Opmeer, Mark

Up a level |

**23**.

## Book Sections

Opmeer, M.R., 2012. Model reduction for distributed parameter systems : A functional analytic view. *In*: *Proceedings of the American Control Conference.* American Automatic Control Council, pp. 1418-1423.

## Articles

Guiver, C. and Opmeer, M.R., 2014. Model reduction by balanced truncation for systems with nuclear Hankel operators. *SIAM Journal on Control and Optimization (SICON)*, 52 (2), pp. 1366-1401.

Guiver, C. and Opmeer, M. R., 2013. Error bounds in the gap metric for dissipative balanced approximations. *Linear Algebra and its Applications*, 439 (12), 3659–3698.

Opmeer, M. R., Reis, T. and Wollner, W., 2013. Finite-rank ADI iteration for operator Lyapunov equations. *SIAM Journal on Control and Optimization (SICON)*, 51 (5), 4084–4117.

Guiver, C. and Opmeer, M. R., 2013. Bounded real and positive real balanced truncation for infinite-dimensional systems. *Mathematical Control and Related Fields*, 3 (1), pp. 83-119.

Opmeer, M. R., 2012. Model order reduction by balanced proper orthogonal decomposition and by rational interpolation. *IEEE Transactions on Automatic Control*, 57 (2), pp. 472-477.

Opmeer, M. R. and Staffans, O. J., 2012. Coprime factorization and optimal control on the doubly infinite discrete time axis. *SIAM Journal on Control and Optimization (SICON)*, 50 (1), pp. 266-285.

Opmeer, M., 2011. Infinite-dimensional negative imaginary systems. *IEEE Transactions on Automatic Control*, 56 (12), pp. 2973-2976.

Guiver, C. and Opmeer, M. R., 2011. A counterexample to "positive realness preserving model reduction with H-infinity norm error bounds". *IEEE Transactions on Circuits and Systems. Part I: Regular Papers*, 58 (6), pp. 1410-1411.

Curtain, R. F. and Opmeer, M. R., 2011. Coprime factorization and robust stabilization for discrete-time infinite-dimensional systems. *Mathematics of Control Signals and Systems*, 23 (1-3), pp. 101-115.

Opmeer, M. R., 2010. Decay of Hankel singular values of analytic control systems. *Systems & Control Letters*, 59 (10), pp. 635-638.

Guiver, C. and Opmeer, M. R., 2010. Non-dissipative boundary feedback for Rayleigh and Timoshenko beams. *Systems & Control Letters*, 59 (9), pp. 578-586.

Opmeer, M. R. and Staffans, O. J., 2010. Optimal input-output stabilization of infinite-dimensional discrete time-invariant linear systems by output injection. *SIAM Journal on Control and Optimization (SICON)*, 48 (8), pp. 5084-5107.

Curtain, R. F. and Opmeer, M. R., 2009. State space formulas for a solution of the suboptimal Nehari problem on the unit disc. *Integral Equations and Operator Theory*, 64 (1), pp. 35-59.

Opmeer, M., 2008. Nuclearity of Hankel operators for ultradifferentiable control systems. *Systems & Control Letters*, 57 (11), pp. 913-918.

Opmeer, M. R. and Staffans, O. J., 2008. Optimal State Feedback Input-Output Stabilization of Infinite-Dimensional Discrete Time-Invariant Linear Systems. *Complex Analysis and Operator Theory*, 2 (3), pp. 479-510.

Opmeer, M. R., 2007. LQG balancing for continuous-time infinite-dimensional systems. *SIAM Journal on Control and Optimization (SICON)*, 46 (5), pp. 1831-1848.

Opmeer, M. R., 2006. Distribution semigroups and control systems. *Journal of Evolution Equations*, 6 (1), pp. 145-159.

Curtain, R. F. and Opmeer, M. R., 2006. Normalized doubly coprime factorizations for infinite-dimensional linear systems. *Mathematics of Control Signals and Systems*, 18 (1), pp. 1-31.

Opmeer, M. R., 2005. Infinite-dimensional linear systems: A distributional approach. *Proceedings of the London Mathematical Society*, 91, pp. 738-760.

Curtain, R. F. and Opmeer, M. R., 2005. The suboptimal Nehari problem for well-posed linear systems. *SIAM Journal on Control and Optimization (SICON)*, 44 (3), pp. 991-1018.

Opmeer, M. R. and Curtain, R. F., 2004. Linear quadratic Gaussian balancing for discrete-time infinite-dimensional linear systems. *SIAM Journal on Control and Optimization (SICON)*, 43 (4), pp. 1196-1221.

Opmeer, M. R. and Curtain, R. F., 2004. New Riccati equations for well-posed linear systems. *Systems & Control Letters*, 52 (5), pp. 339-347.