# Items by Toland, John

Up a level |

**16**.

## Book/s

Buffoni, B. and Toland, J. F., 2003. *Analytic Theory of Global Bifurcation.* Princeton and Oxford: Princeton University Press.

Buffoni, B. and Toland, J. F., 2002. *Introduction a la Theorie Globale des Bifurcations.* Presses Polytechniques et Universitaires Romandes.

## Articles

Shargorodsky, E. and Toland, J. F., 2006. Bernoulli Free Boundary Problems. *Memoirs of American Mathematical Society*

Crispin, D. J. and Toland, J. F., 2005. Galerkin's method, monotonicity and linking for indefinite Hamiltonian systems with bounded potential energy. *Calculus of Variations and Partial Differential Equations*, 23 (2), pp. 205-226.

Buffoni, B., Sere, E. and Toland, J. F., 2005. Minimization Methods for Quasi-Linear Problems with an Application to Periodic Water Waves. *SIAM Journal on Mathematical Analysis (SIMA)*, 36 (4), pp. 1080-1094.

Iooss, G., Plotnikov, P. I. and Toland, J. F., 2005. Standing waves on an infinitely deep perfect fluid under gravity. *Archive for Rational Mechanics and Analysis*, 177 (3), pp. 367-478.

Plotnikov, P. I. and Toland, J. F., 2004. Convexity of Stokes waves of extreme form. *Archive for Rational Mechanics and Analysis*, 171 (3), pp. 349-416.

Shargorodsky, E. and Toland, J. F., 2003. A Riemann-Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves. *Annales De L Institut Henri Poincare: Analyse Non Linéaire*, 20 (1), pp. 37-52.

Plotnikov, P. I. and Toland, J. F., 2003. On the second Stokes conjecture for the wave of extreme form. *Doklady Mathematics*, 67 (3), pp. 366-368.

Shargorodsky, E. and Toland, J. F., 2003. Riemann-Hilbert theory for problems with vanishing coefficients that arise in nonlinear hydrodynamics. *Journal of Functional Analysis*, 197, pp. 283-300.

Buffoni, B., Sere, E. and Toland, J. F., 2003. Surface waves as saddle points of the energy. *Calculus of Variations and Partial Differential Equations*, 17 (2), pp. 199-220.

Toland, J. F., 2002. A pseudo-differential equations for Stokes waves. *Archive for Rational Mechanics and Analysis*, 162, pp. 179-189.

Toland, J. F., 2001. Continuity and differentiability of Nemytskii operators in the Hardy space H^{1,1}_R. *Arkiv fur Mathematik*, 39, pp. 383-394.

Buffoni, B. and Toland, J. F., 2001. Dual free boundaries for Stokes waves. *Comptes Rendus Mathematique*, 332, pp. 73-78.

Plotnikov, P. I. and Toland, J. F., 2001. Nash-Moser theory for standing water waves. *Archive for Rational Mechanics and Analysis*, 159 (1), pp. 1-83.

Champneys, A., Harris, S. C., Toland, J., Warren, J. and Williams, D., 1995. Algebra, analysis and probability for a coupled system of reaction-diffusion equations. *Philosophical Transactions: Mathematical, Physical and Engineering Sciences*, 350 (1692), pp. 69-112.