# Items by Hill, Adrian

Up a level |

Jump to: Articles

Number of items:

**13**.## Articles

Butcher, J. C., Habib, Y., Hill, A. T. and Norton, T. J. T., 2014. The control of parasitism in $G$-symplectic methods.

*SIAM Journal on Numerical Analysis (SINUM)*, 52 (5), pp. 2440-2465.Hill, A. T. and Ilchmann, A., 2011. Exponential stability of time-varying linear systems.

*IMA Journal of Numerical Analysis*, 31 (3), pp. 865-885.Hewitt, L. L. and Hill, A. T., 2010. Algebraically stable diagonally implicit general linear methods.

*Applied Numerical Mathematics*, 60 (6), pp. 629-636.Boutelje, B. R. and Hill, A. T., 2010. Nonautonomous stability of linear multistep methods.

*IMA Journal of Numerical Analysis*, 30 (2), pp. 525-542.Hill, A. T., 2010. G-matrices for algebraically stable general linear methods.

*Numerical Algorithms*, 53 (2-3), pp. 281-292.Hewitt, L. L. and Hill, A. T., 2009. Algebraically stable general linear methods and the G-matrix.

*BIT Numerical Mathematics*, 49 (1), pp. 93-111.Hill, A., 2009. Linear multistep approximation of nonsymmetric rotating systems.

*JNAIAM. Journal of Numerical Analysis, Industrial and Applied Mathematics*, 4 (1-2), pp. 103-112.Coughlan, J. J., Hill, A. T. and Logemann, H., 2007. The Z-transform and linear multistep stability.

*IMA Journal of Numerical Analysis*, 27 (1), pp. 45-73.Butcher, J. C. and Hill, A. T., 2006. Linear multistep methods as irreducible general linear methods.

*BIT Numerical Mathematics*, 46 (1), pp. 5-19.Hill, A. T., 2006. Nonlinear stability of general linear methods.

*Numerische Mathematik*, 103 (4), pp. 611-629.Hill, A. T., 2005. Multistep approximation of linear sectorial evolution equations.

*IMA Journal of Numerical Analysis*, 25 (1), pp. 45-56.Hill, A. T. and Wan, W. L., 2004. Analysis and numerics for a parabolic equation with impulsive forcing.

*Applied Numerical Mathematics*, 50 (3-4), pp. 445-474.Del Buono, N. and Hill, A. T., 2002. On a multistep method approximating a linear sectorial evolution equation.

*IMA Journal of Numerical Analysis*, 22 (3), pp. 481-499.