# Items by Spence, Euan

Up a level |

**14**.

## Articles

Spence, E. A., 2015. Forthcoming. Bounding acoustic layer potentials via oscillatory integral techniques. *BIT Numerical Mathematics*, 55 (1), pp. 279-318.

Graham, I. G., Löhndorf, M., Melenk, J. M. and Spence, E. A., 2015. When is the error in the h-BEM for solving the Helmholtz equation bounded independently of k ? *BIT Numerical Mathematics*, 55 (1), pp. 171-214.

Gander, M. J., Graham, I. G. and Spence, E. A., 2015. Forthcoming. Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed? *Numerische Mathematik*

Spence, E. A., Kamotski, I. V. and Smyshlyaev, V. P., 2015. Coercivity of combined boundary integral equations in high-frequency scattering. *Communications on Pure and Applied Mathematics*

Moiola, A. and Spence, E.A., 2014. Is the helmholtz equation really sign-indefinite? *Siam Review*, 56 (2), pp. 274-312.

Betcke, T., Phillips, J. and Spence, E. A., 2014. Spectral decompositions and nonnormality of boundary integral operators in acoustic scattering. *IMA Journal of Numerical Analysis*, 34 (2), pp. 700-731.

Spence, E. A., 2014. Wavenumber-Explicit Bounds in Time-Harmonic Acoustic Scattering. *SIAM Journal on Mathematical Analysis (SIMA)*, 46 (4), pp. 2987-3024.

Graham, I., Spence, E., Chandler-Wilde, S. and Langdon, S., 2012. Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. *Acta Numerica*, 21, pp. 89-305.

Fokas, A.S. and Spence, E.A., 2012. Synthesis, as Opposed to Separation, of Variables. *Siam Review*, 54 (2), pp. 291-324.

Spence, E. A., Chandler-Wilde, S. N., Graham, I. G. and Smyshlyaev, V. P., 2011. A new frequency-uniform coercive boundary integral equation for acoustic scattering. *Communications on Pure and Applied Mathematics*, 64 (10), pp. 1384-1415.

Betcke, T. and Spence, E. A., 2011. Numerical estimation of coercivity constants for boundary integral operators in acoustic scattering. *SIAM Journal on Numerical Analysis (SINUM)*, 49 (4), pp. 1572-1601.

Spence, E. A. and Fokas, A. S., 2010. A new transform method I: domain-dependent fundamental solutions and integral representations. *Proceedings of the Royal Society of London Series A - Mathematical Physical and Engineering Sciences*, 466 (2120), pp. 2259-2281.

Spence, E. A. and Fokas, A. S., 2010. A new transform method II: the global relation and boundary-value problems in polar coordinates. *Proceedings of the Royal Society of London Series A - Mathematical Physical and Engineering Sciences*, 466 (2120), pp. 2283-2307.

Smitheman, S. A., Spence, E. A. and Fokas, A. S., 2010. A spectral collocation method for the Laplace and modified Helmholtz equations in a convex polygon. *IMA Journal of Numerical Analysis*, 30 (4), pp. 1184-1205.