Research

Items by Hilker, Frank

Up a level
Export as [feed] RSS 1.0 [feed] Atom [feed] RSS 2.0
Group by: Item Type | Date | No Grouping
Number of items: 29.

Book/s

Hilker, F. M., 2005. Spatiotemporal patterns in models of biological invasion and epidemic spread. Berlin: Logos Verlag.

Book Sections

Stone, L., Hilker, F. and Katriel, G., 2012. SIR models. In: Hastings, A. and Gross, L., eds. Encyclopedia of Theoretical Ecology. Berkeley: University of California Press, pp. 648-658.

Hilker, F. M., 2009. Epidemiological models with demographic Allee effect. In: Biomat 2008: International Symposium on Mathematical and Computational Biology. Singapore: World Scientific, pp. 52-77.

Malchow, H., Hilker, F. M., Siekmann, I., Petrovskii, S. V. and Medvinsky, A. B., 2008. Mathematical models of pattern formation in planktonic predation-diffusion systems: A review. In: Hosking, R. J. and Venturino, E., eds. Aspects of Mathematical Modelling. Basel: Birkhäuser, pp. 1-26. (Mathematics and Biosciences in Interaction)

Malchow, H. and Hilker, F. M., 2007. Pattern formation in models of nonlinear plankton dynamics: a minireview. In: Schröder, B., Reuter, H. and Reineking, B., eds. Multiple Scales in Ecology. Vol. 13. Frankfurt Main: Peter Lang Verlag, pp. 3-20.

Hilker, F. M., Hinsch, M. and Poethke, H. J., 2004. How to compare different conceptual approaches to metapopulation modelling. In: Pahl-Wostl, C., Schmidt, S., Rizzoli, A. E. and Jakeman, A. T., eds. Complexity and Integrated Resources Management. Vol. 2. Manno, Switzerland: International Environmental Modelling and Software Society, pp. 902-907.

Articles

Fronhofer, E. A., Kubisch, A., Hilker, F. M., Hovestadt, T. and Poethke, H. J., 2012. Why are metapopulations so rare? Ecology, 93 (8), pp. 1967-1978.

Bate, A. and Hilker, F., 2012. Rabbits protecting birds: Hypopredation and limitations of hyperpredation. Journal of Theoretical Biology, 297, pp. 103-115.

Anderson, K. E., Hilker, F. M. and Nisbet, R. M., 2012. Directional biases and resource-dependence in dispersal generate spatial patterning in a consumer-producer model. Ecology Letters, 15 (3), pp. 209-217.

Sieber, M. and Hilker, F. M., 2012. The hydra effect in predator-prey models. Journal of Mathematical Biology, 64 (1-2), pp. 341-360.

Dattani, J., Blake, J. and Hilker, F. M., 2011. Target-oriented chaos control. Physics Letters A, 375 (45), pp. 3986-3992.

Oliveira, N. M. and Hilker, F. M., 2010. Modelling disease introduction as biological control of invasive predators to preserve endangered prey. Bulletin of Mathematical Biology, 72 (2), pp. 444-468.

Hilker, F. M., 2010. Population collapse to extinction: The catastrophic combination of parasitism and Allee effect. Journal of Biological Dynamics, 4 (1), pp. 86-101.

Stollenwerk, N., van Noort, S., Martins, J., Aguiar, M., Hilker, F., Pinto, A. and Gomes, G., 2010. A spatially stochastic epidemic model with partial immunization shows in mean field approximation the reinfection threshold. Journal of Biological Dynamics, 4 (6), pp. 634-649.

Gomes, M. G. M., Rodrigues, P., Hilker, F. M., Mantilla-Beniers, N. B., Muehlen, M., Paulo, A. C. A. S. and Medley, G. F., 2007. Implications of partial immunity on the prospects for tuberculosis control by post-exposure interventions. Journal of Theoretical Biology, 248 (4), pp. 608-617.

Hilker, F. M., Langlais, M., Petrovskii, S. V. and Malchow, H., 2007. A diffusive SI model with Allee effect and application to FIV. Mathematical Biosciences, 206 (1), pp. 61-80.

Hilker, F. M. and Westerhoff, F. H., 2007. Triggering crashes in chaotic dynamics. Physics Letters A, 362 (5-6), pp. 407-411.

Hilker, F. M. and Westerhoff, F. H., 2007. Preventing extinction and outbreaks in chaotic populations. American Naturalist, 170 (2), pp. 232-241.

Hilker, F. M., Hinsch, M. and Poethke, H. J., 2006. Parameterizing, evaluating and comparing metapopulation models with data from individual-based simulations. Ecological Modelling, 199 (4), pp. 476-485.

Hilker, F. M., Malchow, H., Langlais, M. and Petrovskii, S., 2006. Oscillations and waves in a virally infected plankton system: Part II: Transition from lysogeny to lysis. Ecological Complexity, 3 (3), pp. 200-208.

Hilker, F. M. and Malchow, H., 2006. Strange periodic attractors in a prey-predator system with infected prey. Mathematical Population Studies, 13, pp. 119-134.

Hilker, F. M. and Westerhoff, F. H., 2006. Paradox of simple limiter control. Physical Review E (PRE), 73 (5), 052901.

Malchow, H., Hilker, F. M., Sarkar, R. R. and Brauer, K., 2005. Spatiotemporal patterns in an excitable plankton system with lysogenic viral infection. Mathematical and Computer Modelling, 42 (9-10), pp. 1035-1048.

Hilker, F. M., Lewis, M. A., Seno, H., Langlais, M. and Malchow, H., 2005. Pathogens can slow down or reverse invasion fronts of their hosts. Biological Invasions, 7 (5), pp. 817-832.

Petrovskii, S. V., Malchow, H., Hilker, F. M. and Venturino, E., 2005. Patterns of patchy spread in deterministic and stochastic models of biological invasion and biological control. Biological Invasions, 7 (5), pp. 771-793.

Becks, L., Hilker, F. M., Malchow, H., Jürgens, K. and Arndt, H., 2005. Experimental demonstration of chaos in a microbial food web. Nature, 435, pp. 1226-1229.

Malchow, H., Hilker, F. M., Petrovskii, S. V. and Brauer, K., 2004. Oscillations and waves in a virally infected plankton system: Part I: The lysogenic stage. Ecological Complexity, 1 (3), pp. 211-223.

Malchow, H., Hilker, F. M. and Petrovskii, S. V., 2004. Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system. Discrete and Continuous Dynamical Systems B, 4 (3), pp. 705-711.

Malchow, H., Petrovskii, S. V. and Hilker, F. M., 2003. Models of spatiotemporal pattern formation in plankton dynamics. Nova Acta Leopoldina NF, 88 (332), pp. 325-340.

This list was generated on Sat Sep 20 06:57:04 2014 IST.