Research

Items by Wilson, David

Up a level
Export as [feed] RSS 1.0 [feed] Atom [feed] RSS 2.0
Group by: Item Type | Date | No Grouping
Number of items: 14.

Wilson, D., Davenport, J. H., England, M. and Bradford, R. J., 2014. A "piano movers" problem reformulated. In: Proceedings of SYNASC 2013: 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. IEEE, pp. 53-60.

Wilson, D., Bradford, R., Davenport, J. H. and England, M., 2014. Cylindrical algebraic sub-decompositions. Unpublished (Submitted)

Bradford, R., Davenport, J.H., England, M., McCallum, S. and Wilson, D., 2014. Truth table invariant cylindrical algebraic decomposition. Unpublished (Submitted)

Wilson, D. J. and England, M., 2013. Layered Cylindrical Algebraic Decomposition. Other. Bath, U. K.: Department of Computer Science, University of Bath. (Department of Computer Science Technical Report Series; CSBU-2013-05)

Wilson, D., Bradford, R. J., Davenport, J. H. and England, M., 2013. The Piano Mover's Problem Reformulated. Other. Bath, U. K.: Department of Computer Science, University of Bath. (Department of Computer Science Technical Report Series; CSBU-2013-03)

Bradford, R., Davenport, J. and Wilson, D., 2013. A repository for CAD Examples. ACM Communications in Computer Algebra, 46 (3), pp. 67-69.

England, M., Cheb-Terrab, E., Bradford, R., Davenport, J. and Wilson, D., 2013. Forthcoming. Branch Cuts in Maple 17. ACM Communications in Computer Algebra

Bradford, R., Davenport, J. H., England, M., McCallum, S. and Wilson, D., 2013. Cylindrical algebraic decompositions for Boolean combinations. In: ISSAC '13: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation. New York: ACM, pp. 125-132.

Bradford, R., Davenport, J. H., England, M. and Wilson, D., 2013. Optimising problem formulation for cylindrical algebraic decomposition. In: Carette, J., Aspinall, D., Lange, C., Sojka, P. and Windsteiger, W., eds. Intelligent Computer Mathematics. Berlin: Springer, pp. 19-34. (Lecture Notes in Computer Science; 7961)

England, M., Bradford, R., Davenport, J. H. and Wilson, D., 2013. Understanding branch cuts of expressions. In: Carette, J., Aspinall, D., Lange, C., Sojka, P. and Windsteiger, W., eds. Intelligent Computer Mathematics. Berlin: Springer, pp. 136-151. (Lecture Notes in Computer Science; 7961)

Wilson, D., 2012. Real Geometry and Connectedness via Triangular Description: CAD Example Bank. [Dataset]

Davenport, J., Bradford, R., England, M. and Wilson, D., 2012. Order-Invariance of Cylindrical Algebraic Decomposition via Triangular Decomposition. Working Paper.

Davenport, J., Bradford, R., England, M. and Wilson, D., 2012. Program Verification in the presence of complex numbers, functions with branch cuts etc. In: Proceedings of SYNASC 2012: 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. Piscataway: IEEE, pp. 83-88.

Wilson, D. J., Bradford, R. J. and Davenport, J. H., 2012. Speeding up cylindrical algebraic decomposition by Gröebner Bases. In: Jeuring, J., Campbell, J. A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M. and Sorge, V., eds. Intelligent Computer Mathematics. Vol. 7362. Heidelberg: , pp. 280-294. (Lecture Notes in Computer Science; 7362)

This list was generated on Sat Apr 19 03:06:47 2014 IST.