Research

Items by England, Matthew

Up a level
Export as [feed] RSS 1.0 [feed] Atom [feed] RSS 2.0
Group by: Item Type | Date | No Grouping
Number of items: 16.

Wilson, D., Davenport, J. H., England, M. and Bradford, R. J., 2014. A "piano movers" problem reformulated. In: Proceedings of SYNASC 2013: 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. IEEE, pp. 53-60.

Wilson, D., Bradford, R., Davenport, J. H. and England, M., 2014. Cylindrical algebraic sub-decompositions. Unpublished (Submitted)

Bradford, R., Davenport, J.H., England, M., McCallum, S. and Wilson, D., 2014. Truth table invariant cylindrical algebraic decomposition. Unpublished (Submitted)

Wilson, D. J. and England, M., 2013. Layered Cylindrical Algebraic Decomposition. Other. Bath, U. K.: Department of Computer Science, University of Bath. (Department of Computer Science Technical Report Series; CSBU-2013-05)

Wilson, D., Bradford, R. J., Davenport, J. H. and England, M., 2013. The Piano Mover's Problem Reformulated. Other. Bath, U. K.: Department of Computer Science, University of Bath. (Department of Computer Science Technical Report Series; CSBU-2013-03)

England, M., 2013. An Implementation of CAD in Maple Utilising Problem Formulation, Equational Constraints and Truth-Table Invariance. Other. Bath, U. K.: Department of Computer Science, University of Bath. (Department of Computer Science Technical Report Series; CSBU-2013-04)

England, M., 2013. An Implementation of CAD in Maple Utilising McCallum Projection. Other. Bath, U. K.: Department of Computer Science, University of Bath. (Department of Computer Science Technical Report Series; CSBU-2013-02)

England, M., Cheb-Terrab, E., Bradford, R., Davenport, J. and Wilson, D., 2013. Forthcoming. Branch Cuts in Maple 17. ACM Communications in Computer Algebra

Bradford, R., Davenport, J. H., England, M., McCallum, S. and Wilson, D., 2013. Cylindrical algebraic decompositions for Boolean combinations. In: ISSAC '13: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation. New York: ACM, pp. 125-132.

Bradford, R., Davenport, J. H., England, M. and Wilson, D., 2013. Optimising problem formulation for cylindrical algebraic decomposition. In: Carette, J., Aspinall, D., Lange, C., Sojka, P. and Windsteiger, W., eds. Intelligent Computer Mathematics. Berlin: Springer, pp. 19-34. (Lecture Notes in Computer Science; 7961)

England, M., Bradford, R., Davenport, J. H. and Wilson, D., 2013. Understanding branch cuts of expressions. In: Carette, J., Aspinall, D., Lange, C., Sojka, P. and Windsteiger, W., eds. Intelligent Computer Mathematics. Berlin: Springer, pp. 136-151. (Lecture Notes in Computer Science; 7961)

England, M. and Athorne, C., 2012. Building Abelian Functions with Generalised Baker-Hirota Operators. SIGMA: Symmetry, Integrability and Geometry: Methods and Applications, 8 (037).

England, M. and Athone, C., 2012. Generalised elliptic functions. Central European Journal of Mathematics, 10 (5), pp. 1655-1672.

Davenport, J., Bradford, R., England, M. and Wilson, D., 2012. Order-Invariance of Cylindrical Algebraic Decomposition via Triangular Decomposition. Working Paper.

Davenport, J., Bradford, R., England, M. and Wilson, D., 2012. Program Verification in the presence of complex numbers, functions with branch cuts etc. In: Proceedings of SYNASC 2012: 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. Piscataway: IEEE, pp. 83-88.

England, M., Eilbeck, J. C. and Onishi, Y., 2012. Some New Addition Formulae for Weierstrass Elliptic Functions. Submitted paper

This list was generated on Fri Apr 18 14:27:54 2014 IST.