# Items by Lindgren, Finn

Up a level |

**12**.

## Articles

Bolin, D. and Lindgren, F., 2014. Forthcoming. Excursion and contour uncertainty regions for latent gaussian models. *Journal of the Royal Statistical Society, Series B (Statistical Methodology)*

Bolin, D. and Lindgren, F., 2013. A comparison between Markov approximations and other methods for large spatial data sets. *Computational Statistics & Data Analysis*, 61, pp. 7-21.

Simpson, D., Lindgren, F. and Rue, H., 2012. Think continuous : Markovian Gaussian models in spatial statistics. *Spatial Statistics*, 1, pp. 16-29.

Cameletti, M., Lindgren, F., Simpson, D. and Rue, H., 2012. Spatio-temporal modeling of particulate matter concentration through the SPDE approach. *AStA Advances in Statistical Analysis*, 97 (2), pp. 109-131.

Simpson, D., Lindgren, F. and Rue, H., 2012. In order to make spatial statistics computationally feasible, we need to forget about the covariance function. *Environmetrics*, 23 (1), pp. 65-74.

Lindgren, F., Rue, H. and Lindström, J., 2011. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. *Journal of the Royal Statistical Society, Series B (Statistical Methodology)*, 73 (4), pp. 423-498.

Lindgren, G. and Lindgren, F., 2011. Stochastic asymmetry properties of 3D gauss-lagrange ocean waves with directional spreading. *Stochastic Models*, 27 (3), pp. 490-520.

Lindgren, F., Martins, T., Rue, H. and Simpson, D., 2011. Discussion on "Spatial prediction in the presence of positional error". *Environmetrics*, 22 (2), p. 127.

Bolin, D. and Lindgren, F., 2011. Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping. *Annals of Applied Statistics*, 5 (1), pp. 523-550.

Lindgren, G., Bolin, D. and Lindgren, F., 2010. Non-traditional stochastic models for ocean waves. *European Physical Journal - Special Topics*, 185 (1), pp. 209-224.

Bolin, D., Lindström, J., Lindgren, F. and Eklundh, L., 2009. Fast estimation of spatially dependent temporal vegetation trends using Gaussian Markov random fields. *Computational Statistics & Data Analysis*, 53 (8), pp. 2885-2896.

Lindgren, F. and Rue, H., 2008. On the second-order random walk model for irregular locations. *Scandinavian Journal of Statistics*, 35 (4), pp. 691-700.