Research

Items by Majumdar, Apala

Up a level
Export as [feed] RSS 1.0 [feed] Atom [feed] RSS 2.0
Group by: Item Type | Date | No Grouping
Number of items: 25.

Majumdar, A., Robbins, J. M. and Zyskin, M., 2015. Elastic energy of liquid crystals in convex polyhedra. Journal of Physics A: Mathematical and General, 37 (44), L573.

Kusumaatmaja, H. and Majumdar, A., 2015. Free energy pathways of a multistable liquid crystal device. Soft Matter, 11 (24), pp. 4809-4817.

Majumdar, A. and Raisch, A., 2014. Stability of twisted rods, helices and buckling solutions in three dimensions. Nonlinearity, 27 (12), pp. 2841-2867.

Lewis, A., Garlea, I., Alvarado, J., Dammone, O., Howell, P., Majumdar, A., Mulder, B., Lettinga, M. P., Koenderink, G. and Aarts, D., 2014. Colloidal liquid crystals in rectangular confinement : Theory and experiment. Soft Matter, 39, pp. 7865-7873.

Kralj, S. and Majumdar, A., 2014. Order reconstruction patterns in nematic liquid crystal wells. Proceedings of the Royal Society of London Series A - Mathematical Physical and Engineering Sciences, 470 (2169), 20140276.

Majumdar, A., Ockendon, J., Howell, P. and Surovyatkina, E., 2013. Transitions through critical temperatures in nematic liquid crystals. Physical Review E, 88 (2), 022501.

Majumdar, A., 2012. The Landau-de Gennes theory for nematic liquid crystals:uniaxiality versus biaxiality. Communications in Pure and Applied Analysis, 11 (3), pp. 1303-1337.

Giomi, L., Bowick, M. J., Ma, X. and Majumdar, A., 2012. Molecular tilt on monolayer-protected nanoparticles. EPL (Europhysics Letters), 97 (3), 36005.

Majumdar, A., 2012. The radial-hedgehog solution in Landau – de Gennes’ theory for nematic liquid crystals. European Journal of Applied Mathematics, 23 (01), pp. 61-97.

Majumdar, A., Prior, C. and Goriely, A., 2012. Stability estimates for a twisted rod under terminal loads:a three-dimensional study. Journal of Elasticity, 109 (1), pp. 75-93.

Henao, D. and Majumdar, A., 2012. Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystals. SIAM Journal on Mathematical Analysis (SIMA), 44 (5), pp. 3217-3241.

Majumdar, A., Robbins, J. M. and Zyskin, M., 2011. Tangent unit-vector fields:Nonabelian homotopy invariants and the dirichlet energy. Acta Mathematica Scientia, 30 (5), pp. 1357-1399.

Peppin, S., Majumdar, A., Style, R. and Sander, G., 2011. Frost heave in colloidal soils. SIAM Journal on Applied Mathematics, 71 (5), pp. 1717-1732.

Majumdar, A. and Zarnescu, A., 2010. Landau–de Gennes theory of nematic liquid crystals: the Oseen–Frank limit and beyond. Archive for Rational Mechanics and Analysis, 196 (1), pp. 227-280.

Majumdar, A., 2010. Equilibrium order parameters of nematic liquid crystals in the Landau-de Gennes theory. European Journal of Applied Mathematics, 21 (2), pp. 181-203.

Majumdar, A., Peppin, S. and Wettlaufer, J., 2010. Morphological instability of a non-equilibrium ice-colloid interface. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 466 (2113), pp. 177-194.

Peppin, S. S. L., Majumdar, A. and Wettlaufer, J. S., 2010. Morphological instability of a non-equilibrium icecolloid interface. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 466 (211).

Majumdar, A., Robbins, J. and Zyskin, M., 2009. Tangent unit-vector fields:Nonabelian homotopy invariants and the Dirichlet energy. Comptes Rendus Mathematique, 347 (19-20), pp. 1159-1164.

Majumdar, A., Robbins, J. M. and Zyskin, M., 2008. Energies of S2-valued harmonic maps on polyhedra with tangent boundary conditions. Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire, 25 (1), pp. 77-103.

Majumdar, A., Newton, C. J. P., Robbins, J. M. and Zyskin, M., 2007. Topology and bistability in liquid crystal devices. Physical Review E, 75, 051703.

Majumdar, A., Robbins, J. M. and Zyskin, M., 2006. Elastic energy for reflection-symmetric topologies. Journal of Physics A: Mathematical and General, 39 (11), p. 2673.

Majumdar, A., Robbins, J. M. and Zyskin, M., 2004. Lower bounds for energies of harmonic tangent unit-vector fields on convex polyhedra. Letters in Mathematical Physics, 70 (2), pp. 169-183.

This list was generated on Sat Aug 29 04:09:07 2015 IST.