# Items by Di Francesco, Marco

Up a level |

**16**.

## Articles

Francesco, M. D. and Fagioli, S., 2013. Measure solutions for non-local interaction PDEs with two species. *Nonlinearity*, 26 (10), pp. 2777-2808.

Di Francesco, M. and Matthes, D., 2013. Curves of steepest descent are entropy solutions for a class of degenerate convection-diffusion equations. *Calculus of Variations and Partial Differential Equations*, n/a, n/a.

Burger, M., Di Francesco, M. and Franek, M., 2013. Stationary states of quadratic diffusion equations with long-range attraction. *Communications in Mathematical Sciences*, 11 (3), pp. 709-738.

Carrillo, J.A., Di Francesco, M., Figalli, A., Laurent, T. and Slepčev, D., 2012. Confinement in nonlocal interaction equations. *Nonlinear Analysis: Theory Methods & Applications*, 75 (2), pp. 550-558.

Amadori, D. and Di Francesco, M., 2012. The one-dimensional Hughes model for pedestrian flow : Riemann-type solutions. *Acta Mathematica Scientia*, 32 (1), pp. 367-379.

Di Francesco, M. and Twarogowska, M., 2011. Asymptotic stability of constant steady states for a 2 2 reaction-diffusion system arising in cancer modelling. *Mathematical and Computer Modelling*, 53 (7-8), pp. 1457-1468.

Carrillo, J.A., Di Francesco, M., Figalli, A., Laurent, T. and Slepčev, D., 2011. Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. *Duke Mathematical Journal*, 156 (2), pp. 229-271.

Di Francesco, M., Markowich, P.A., Pietschmann, J.-F. and Wolfram, M.-T., 2011. On the Hughes' model for pedestrian flow: the one-dimensional case. *Journal of Differential Equations*, 250 (3), pp. 1334-1362.

Di Francesco, M., Lorz, A. and Markowich, P., 2010. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion : Global existence and asymptotic behavior. *Discrete and Continuous Dynamical Systems*, 28 (4), pp. 1437-1453.

Burger, M., Di Francesco, M., Pietschmann, J.-F. and Schlake, B., 2010. Nonlinear cross-diffusion with size exclusion. *SIAM Journal on Mathematical Analysis (SIMA)*, 42 (6), pp. 2842-2871.

Di Francesco, M. and Donatelli, D., 2010. Singular convergence of nonlinear hyperbolic chemotaxis systems to keller-segel type models. *Discrete and Continuous Dynamical Systems - Series B*, 13 (1), pp. 79-100.

Di Francesco, M., Markowich, P.A. and Fellner, K., 2008. The entropy dissipation method for spatially inhomogeneous reaction-diffusion-type systems. *Proceedings of the Royal Society of London Series A - Mathematical Physical and Engineering Sciences*, 464 (2100), pp. 3273-3300.

Burger, M. and Di Francesco, M., 2008. Large time behavior of nonlocal aggregation models with nonlinear diffusion. *Networks and Heterogeneous Media*, 3 (4), pp. 749-785.

Di Francesco, M. and Rosado, J., 2008. Fully parabolic Keller-Segel model for chemotaxis with prevention of overcrowding. *Nonlinearity*, 21 (11), pp. 2715-2730.

Di Francesco, M. and Wunsch, M., 2008. Large time behavior in Wasserstein spaces and relative entropy for bipolar drift-diffusion-Poisson models. *Monatshefte fur Mathematik*, 154 (1), pp. 39-50.

Di Francesco, M., Fellner, K. and Liu, H., 2008. A nonlocal conservation law with nonlinear "radiation" inhomogeneity. *Journal of Hyperbolic Differential Equations*, 5 (1), pp. 1-23.