# Items by Rogers, Timothy

Up a level |

**17**.

## Articles

G. Rossberg, A., Rogers, T. C. and McKane, A. J., 2013. How, if, and why species form. *Scientist*, 27 (11).

Rogers, T. C. and Gross, T., 2013. Consensus time and conformity in the adaptive voter model. *Physical Review E*, 88 (3), 030102.

G. Rossberg, A., Rogers, T. and McKane, A. J., 2013. Are there species smaller than 1 mm? *Proceedings of the Royal Society B: Biological Sciences*, 280 (1767), 20131248.

Constable, G. W. A., McKane, A. J. and Rogers, T., 2013. Stochastic dynamics on slow manifolds. *Journal of Physics A: Mathematical and Theoretical*, 46 (29), 295002.

Caccioli, F., Dall'Asta, L., Galla, T. and Rogers, T., 2013. Voter models with conserved dynamics. *Physical Review E*, 87 (5), 052114.

McKane, A. J., Biancalani, T. and Rogers, T., 2013. Forthcoming. Stochastic pattern formation and spontaneous polarisation: The linear noise approximation and beyond. *Bulletin of Mathematical Biology*

Rogers, T., Clifford-Brown, W., Mills, C. and Galla, T., 2012. Stochastic oscillations of adaptive networks: application to epidemic modelling. *Journal of Statistical Mechanics-Theory and Experiment*, 2012 (August), P08018.

Rogers, T., McKane, A. J. and Rossberg, A. G., 2012. Demographic noise can lead to the spontaneous formation of species. *EPL (Europhysics Letters)*, 97 (4), 40008.

Rogers, T. and McKane, A. J., 2012. Jamming and pattern formation in models of segregation. *Physical Review E*, 85 (4), 041136.

Biancalani, T., Rogers, T. and McKane, A. J., 2012. Noise-induced metastability in biochemical networks. *Physical Review E*, 86 (1), 010106(R).

Rogers, T., McKane, A. J. and Rossberg, A. G., 2012. Spontaneous genetic clustering in populations of competing organisms. *Physical Biology*, 9 (6), 066002.

Rogers, T. and McKane, A. J., 2011. A unified framework for Schelling's model of segregation. *Journal of Statistical Mechanics-Theory and Experiment*, 2011 (July), P07006.

Rogers, T., 2011. Maximum-entropy moment-closure for stochastic systems on networks. *Journal of Statistical Mechanics-Theory and Experiment*, 2011 (May), P05007.

Rogers, T., 2010. Universal sum and product rules for random matrices. *Journal of Mathematical Physics*, 51 (9), 093304.

Rogers, T., Pérez Vicente, C., Takeda, K. and Pérez Castillo, I., 2010. Spectral density of random graphs with topological constraints. *Journal of Physics A: Mathematical and Theoretical*, 43 (19), 195002.

Rogers, T. and Perez Castillo, I., 2009. Cavity approach to the spectral density of non-Hermitian sparse matrices. *Physical Review E*, 79, 012101.

Rogers, T., Takeda, K., Pérez Castillo, I. and Kühn, R., 2008. Cavity approach to the spectral density of sparse symmetric random matrices. *Physical Review E*, 78 (3), 031116.