Research

Items by Pudney, Christopher

Up a level
Export as [feed] RSS 1.0 [feed] Atom [feed] RSS 2.0
Group by: Item Type | Date | No Grouping
Number of items: 21.

Book Sections

Pudney, C. R., Hay, S. and Scrutton, N. S., 2014. Practical aspects on the use of kinetic isotope effects as probes of flavoprotein enzyme mechanisms. In: Weber, S. and Schleicher, E., eds. Flavins and Flavoproteins. New York: Humana Press, pp. 161-175. (Methods in Molecular Biology; 1146)

Articles

Hardman, S., Pudney, C. R., Hay, S. and Scrutton, N. S., 2013. Excited state dynamics can be used to probe donor-acceptor distances for H-tunneling reactions catalysed by flavoproteins. Biophysical Journal, 105 (11), pp. 2549-2558.

Pudney, C. R., Lane, R. S. K., Fielding, A. J., Maggenis, S. W., Hay, S. and Scrutton, N. S., 2013. Enzymatic single-molecule kinetic isotope effects. Journal of the American Chemical Society, 135 (10), pp. 3855-3864.

Pudney, C., Guerriero, A., Baxter, N. J., Johannissen, L. O., Waltho, J. P., Hay, S. and Scrutton, N. S., 2013. Fast protein motions are coupled to enzyme H-transfer reactions. Journal of the American Chemical Society, 135 (7), pp. 2512-2517.

Pudney, C., Heyes, D. J., Khara, B., Hay, S., Rigby, S. E. J. and Scrutton, N. S., 2012. Kinetic and spectroscopic probes of motions and catalysis in the cytochrome P450 Reductase family of enzymes. FEBS Journal, 279 (9), pp. 1534-1544.

Leferink, N. G. H., Pudney, C., Brenner, S., Heyes, D. J., Eady, R. R., Hasnain, S. S., Hay, S., Rigby, S. E. J. and Scrutton, N. S., 2012. Gating mechanisms for biological electron transfer: Integrating structure with biophysics reveals the nature of redox control in cytochrome P450 reductase and copper-dependent nitrite reductase. FEBS Letters, 586 (5), pp. 578-584.

Pudney, C. R., Khara, B., Johannissen, L. O. and Scrutton, N. S., 2011. Coupled motions direct electrons along human microsomal P450 chains. PLoS Biology, 9 (12), e1001222.

Hay, S., Pudney, C., Sutcliffe, M. J. and Scrutton, N. S., 2010. Probing active site geometry using high pressure and secondary isotope effects in an enzyme-catalysed ‘deep’ H-tunneling reaction. Journal of Physical Organic Chemistry, 23 (7), pp. 696-701.

Adalbjornson, B., Fryszkowska, A., Toogood, H., Pudney, C., Jowitt, T. A., Leys, D. and Scrutton, N. S., 2010. Biocatalysis with thermostable enzymes: Structure and properties of a thermophilic “ene”-reductase related to Old Yellow Enzyme. ChemBiochem, 11 (2), pp. 197-207.

Pudney, C., Johannissen, L. O., Sutcliffe, M. J., Hay, S. and Scrutton, N. S., 2010. Direct analysis of donor-acceptor distance and relationship to isotope effects and the force constant for barrier compression in enzymatic H-tunneling reactions. Journal of the American Chemical Society, 132 (32), pp. 11329-11335.

Pudney, C., Hay, S. and Scrutton, N. S., 2009. Bipartite recognition and conformational sampling mechanisms for hydride transfer from nicotinamide coenzyme to FMN in pentaerythritol tetranitrate reductase. FEBS Journal, 276 (17), pp. 4780-4789.

Hay, S., Pudney, C. and Scrutton, N. S., 2009. Structural and mechanistic aspects of flavoproteins: Probes of hydrogen tunneling. FEBS Journal, 276 (15), pp. 3930-3941.

Pudney, C., McGrory, T., Lafite, P., Pang, J., Hay, S., Leys, D., Sutcliffe, M. J. and Scrutton, N. S., 2009. Parallel pathways and free-energy landscapes for enzymatic hydride transfer probed by hydrostatic pressure. ChemBiochem, 10 (8), pp. 1379-1384.

Hay, S., Pudney, C., McGrory, T. A., Pang, J., Sutcliffe, M. J. and Scrutton, N. S., 2009. Barrier compression enhances an enzymatic hydrogen-transfer reaction. Angewandte Chemie-International Edition, 121 (8), pp. 1480-1483.

Pudney, C., Hay, S., Levy, C., Pang, J., Sutcliffe, M. J., Leys, D. and Scrutton, N. S., 2009. Evidence to support the hypothesis that promoting vibrations enhance the rate of an enzyme catalyzed H-tunneling reaction. Journal of the American Chemical Society, 131 (47), pp. 17072-17073.

Hay, S., Pudney, C., Sutcliffe, M. J. and Scrutton, N. S., 2008. Solvent as a probe of active site motion and chemistry during the hydrogen tunnelling reaction in morphinone reductase. ChemPhysChem, 9 (13), pp. 1875-1881.

Hay, S., Pudney, C., Sutcliffe, M. J. and Scrutton, N. S., 2008. Are environmentally coupled enzymatic hydrogen tunneling reactions influenced by changes in solution viscosity? Angewandte Chemie-International Edition, 47 (3), pp. 537-540.

Hay, S., Pudney, C., Hothi, P., Johannissen, L. O., Masgrau, L., Pang, J., Leys, D., Sutcliffe, M. J. and Scrutton, N. S., 2008. Atomistic insight into the origin of the temperature-dependence of kinetic isotope effects and H-tunnelling in enzyme systems is revealed through combined experimental studies and biomolecular simulation. Biochemical Society Transactions, 36, pp. 16-21.

Hay, S., Pudney, C., Hothi, P. and Scrutton, N. S., 2008. Correction of pre-steady-state KIEs for isotopic impurities and the consequences of kinetic isotope fractionation. The Journal of Physical Chemistry A, 112 (50), pp. 13109-13115.

Pudney, C., Hay, S., Pang, J., Costello, C., Leys, D., Sutcliffe, M. J. and Scrutton, N. S., 2007. Mutagenesis of morphinone reductase induces multiple reactive configurations and identifies potential ambiguity in kinetic analysis of enzyme tunneling mechanisms. Journal of the American Chemical Society, 129 (45), pp. 13949-13956.

Pudney, C., Hay, S., Sutcliffe, M. J. and Scrutton, N. S., 2006. α-Secondary isotope effects as probes of "tunneling-ready" configurations in enzymatic H-tunneling: insight from environmentally coupled tunneling models. Journal of the American Chemical Society, 128 (43), pp. 14053-14058.

This list was generated on Thu Oct 2 03:25:46 2014 IST.